
AD-Ifi" U5 AcCSS: A COMUNICRTING AW COOPE T ING EXPERT SYSTEMS 1/2
SYSTEM(U) SYNIOTICS INC CNMSIDME NA

COTTRAN ET AL. 31 JAN so owie-67-C-W53F/ 1

7MCREhF/0h12/5hMlmhhhhmmhm
mmhhmhmmhhumo

-I'-

S L;

B~t 1..5 fl~ 12.0~

V: 'ROC P. -ESO L ITIOrN TEl
1 N -TIN "IL1N 6

5.%

I,%

Final Report V

ACCESS
A Communicating and Cooperating

Expert Systems System

DTIC
A ELECTE

,,APR 2 71988.
U() Topic No: SBIR A87-319, Department of the Army.

0Y)
Name an. Address of Contracting Small Business Firm

c Symbiotics Inc.
87.5 Main Street

Cambridge Ma 02139-3909

Phase 1 Contract: DAAB10-87-C-0053, U.S. Army Signals Warfare Center.
Contract Effective Date: 30-June-1987

Contract Expiration Date: 30-December-1987
Reporting Period: 30-June-1987 to 31-January-1988

Name and Title of Principal Investigators
Dr. Bruce H. Cottrnan, Vice President of Engineering
Dr. Robert C. Paslav, Vice President of Technology

(617)876-3635

Project Title
ACCESS: A Communicating and Cooperating Expert Systems System

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the offical policies, either expressed or implied, e

of the Government.

''

a X

-- '~.4 L* *~s 4 2

ACCESS
A Communicating and Cooperating

Expert Systems System

The primary focus of Phase I was to prototype a development environment, ACCESS.
for A Communicating and Cooperating Expert Systems System. More generally, this work
explored the question of what capabilities were needed in a development environment for
embedding distributed knowledge-based systems applications on personal computer or work-
station class platforms. The stated goal of the Phase I research and development effort was
to investigate and implement a software environment for the realization of cooperating
knowledge sources on personnal computers. This system was to be Lisp based, distributed
processing was to be facilitated by message passing using TCP/IP, control was to be accom-
plished by neta-level objects and a variety of features were to be provided to aid developers
in building such systems. Underlying these goals was the assumption that the tools needed
to support such an effort, mainly Common Lisp, Portable Common Loops and TCP/I1,
were adequate to do so. Daring the course of this work Symbiotics found several short-
comings in these software tools and identified a need for higher level tools to facilitate
distributed processing development. This report documents that work and the results of
the Phase I effort.

Sy-nbiotics designed and implemented a language based environment to allow the user to
develop and manipulate the distributed processing aspects of the ACCESS system. Specif-
ically, as part of the Phase I effort, Symbiotics chose to develop a high level language to
facilitate the distribution of information to problem solving agents on separate processors.
This language, ORGAL, provides a comprehensive environment for distributed processing
development on a variety of software and hardware architectures. ORGAL has the de-
sired qualities of being interactive, extensible, and intuitive. It allows the user to develop
heterogeneous distributed processing applications using an unique model for asynchronous
message passing which embodies control within the messages themselves. In this manner,
the user can distribute their application quickly and interactively while achieving maximum
computational efficiency. ORGAL is currently being ported to a variety of Lisp environ-
ments as well as to the language C in anticipation of commercial release in the fourth quarter
of 1988.

Another finding of the Phase I effort addresses the current state of affairs of commercial
knowledge-based system development tools. These tools were developed for stand-alone
or centralized processing and are not ideally suited to cooperating knowledge-based agent
applications. This is largely because the developers of these systems envisioned users Onhod-
ding their application in the shells themselves. D)istributed processing utilizing knowledge-
based systems is better served by "artificial intelligence" functionality which can be embed-

.,

,',

SECURITY CLASSIFICATION OF THIS PAGE 78

REPORT DOCUMENTATION PAGE O'm8No 07064-0788
__E.xp Date Jun30,Y8

la REPORT SECURITY CLA iIFION 1b RESTRICTE MARINGS

2a SECURITY CLA %7 ljATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICAT 14 OWNGRADING SCHEDULE A)~ L I F"

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZTO 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
I (if applicable)&

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

373" MAIA1 TE5 VlliN HIill tf4bw &ITd' s.
(AA-1 i / 1 65 - &AA"' 0 2vj- 3 C 1 "q vvV VAI 2 19'6

8a. NAME OF FUNDING/ SPONSORING 8b OFF'C:E SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) O-7-(

N43 (A 7 cS',c f u

8c. ADDRESS (City, State, and ZIP Code) -10. SOURCE OF FUNDING NUMBERS
61'(lF f- liL Fr,,tc ~,c PROGRAM PROJECT TASK WORK UNIT

j4 l Z LAW ;v1.-' I 2--' ELEMENT NO. INO NO ACCESSION NO

11 TITLE (Include Security Classification)

IC C S o I kC it L IU C AT/ R ,'i (A;4YF/' A)? s ~1SS 1 7
12. PERSONAL AUTHOR(S) . - - j

13a. TYPE OF REPORT 113b TIME COVERED 114 DATE OF REPORT (Year, Month, Da)15 PAGE COUNT
FROML~j-LA)/iF_ Toagl4N&I I' o 3

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP 0 LP)'~)2CW,4 C-&:2' bii 141"% I4~8L F ~

19~ ABSTRACT (Continue on reverse if necessarv and idpintifv hv hloi-k numrr

'I le p~rimary focus of Phlase I was to prototype a development en virollnment. ACCESS.
for A Communicating and Cooperating Expert SYstems SYstemn Msore g'IlerallY, thlis work

explore(] tile question of what capabilities were needed in a development e~nvironlmenit for

embedding distributed k nowledge- based systems applications onl personal Computer or work-
stonclass platforms. The stated goal of the Phase I research and development effort was

to investifate an(I implement a software environment for tile realization of cooperating

know.ledge sources on personnal computers. This system was to be Lisp based, (listributedl
processing was to be facilitated by message passing using TCP/IP. control was to be accom-I

* 1 lil ,ed by nieta-level, objects andI a variety of features were to be provided to aid developers

~1 l~ ~sucb systems. -Underlying tilese goals was tile Iassumption thiat the tools needd

to support suci an effort, mainly Common Lisp. Portable Common Loops5 anld TCPI~/P.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

CUNCLASSIFIED/UNLIMITED [3 SArV- AS RPT 2 TIC USERS

22a NAME OF RESPO S BILE INCI(VPUAL 22 TEIPH-ONE (inc lude Area Code) I22c OFFICE ,YVBOL

* lf? s 3a' Y 7o -O g4-ii4-5}
DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURPITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

*~ %

I

were adequate to do so. During the course of this work Symbiotics found several short-

comings in these software tools and identified a need for higher level tools to facilitate

distributed processing development. This report documents that work and the results of

the Phase I effort. %

e'

'

'S

ded in the application. This observation has lead to the development of KNO, all object
oriented, open architecture package for knowledge-based system developmenit. Foremost
in the design effort of KNO was to realize the development of a set of abstractions that
would allow the application of specialized A.]. technologies on the basis of the structure S
and the function of the knowledge representated. The goal was to realize an architec-
ture that would allow the functionality of various reasoning technologies typified by Truth
Maintenance Systems, backward and forward chaining inference engines, and various rep-
resentation technologies typified by semantic nets. Krypton, rule-based, logic-based and e,
framed-based to be commonly representablc as a coherent whole. During the design of the
KNO operation protocols, the subsequent development of the KNO rule-based represen-
tation compiler, an(] the development of ORGAL it was realized that a language-based
architecture coupled with specialized compilers could be the basis on which KNO would be
able to incorporate newly developed or existing artificial intelligence technologies or tools
by description instead of the more costly method of reimplementating.

The result of the Phase I effort is that Symbiotics prototyped a general distributed pro-
cessing environment for a heterogeneous collection of hardware and software platforms. It
is these findings which lay the foundation for our future work. In particular, the funda-
mental question that was resolved was, What minimal set of generic functionality must be
protuidd by a development system to be able to rcpresent an organization of problem soh'-
ing agents?. The Phase I effort has resulted in Symbiotics identifying major issues in
distributed processing as well as making a significant contribution to resolving these issues.

Acessi~lcn For'

DTTC TAB [
Uuannio u-ced [

Just ifioatlon__

BY_

I DLrlrbu-.n

[-A

I Av~i'*bl. tyCoda

--- ,',V _ 1 : i~ll l"A.

" .'.,',',., , . ," € , ,./, ';e.,',. .,€ .Z '- ' .-- :. -- - - , - 5) .,',.., -. ' .'* ._-. .

Contents

1 Introduction 11

1.1 Introduction and Specification of Problemn.. 13

1.2 Distributed Processing and Communnication...... 5

1.2.1 Heterogeneous Distributed Processing 15

1.2.2 Shared Memory and Messag-e Passing 16

1.2.3 Asynchronous Processing. 17

1.2.4 Transparent Distributed Processing.. 1

2 Technical Objectives 19

2.1 Communication Substrate Technical Objectives 19

2.2 ORGAL Technical Objectives. 19

2.3 KNO Technical Objectives. 19

3 Problems Encountered During Effort 21

3.1 Commnon Lisp and Personal Comnputers. 21

:1.2 Porting Lessons Learned. 21

3.3 Networking and Communications. 22

A, 3

a~~~7 71 1 ".77--- -- -

4 Approach and Results 23

.1.1 Communication Substrate 23 1-0

4.1.1 Ethernet Layer. 24

4.1.2 IP: Internet Protocol Layer 21

.1.2 ORGAL - A Tool for Distributed Processing Development25
-j

1.2.1 The ORGAL Model of Distributed Computation 25
-

,4.2.2 ORGAL Phase I Results 26

-1.3 KNO: Knowledge Objects 26

1.3.1 KNO Design Strategy 26

4.3.2 hKNO Phase I Results 27

5 Summary of Phase I Effort 29

.5.1 Summary of Distributed Communication Results 30

5.2 Summary of ORGAL 30

.5.3 Summary of KNO 31 ".r

6 Future Work 33

6.1 Future Direction In Communcation Substrates 33

6.2 Future Directions in Distributed Processing 33
I

6.2.1 Future Directions of DDDS 34 .-

6.2.2 Future Directions of DRDL 35

6.2.3 Future Directions with ORGAI 38

6.3 Future Directions with KNO 39

6.3.1 B as ic K N O0 3................................... 39

4 Pr

.1.%

6.3.2 INO Representation Language. 39

6.4 Summary of Future Work 41

A ORGAL - A Distributed Processing Developmient Environmient, 43

.1~ The Language - ORGAL '3

A l1. First Class Objects 1

A.1.2 :Lifetimec.. 41

A.1.3 :Scope 46

A.1.4 Generic Operations on First Class Objects 46

A.1.5 DefEnv - Adding Hardware Platforms to the ORGAL Database .. 47

A.1.6 DefAgent - Adding Application Gateways to the ORGAL Database 49

A.1.7 Messages 50

A.1.8 Tell - Creating and Passing Messages 51

A.1.9 Agent Types - Runtime Miessage Handling Behavior 52

A.1.10 Originating Agents. 53

A.1.11 Intermediate Agents 53

A.1.12 Application Agents

A.1.13 A Simple Example 56

A.1.14 A Methodology for Development 58

B Basic KNO Reference Manual 60

B3.1 Basic KINO Design Model Go

B3.1.1 KNOOP: Basic KNO Operations 61

B.2 Current Level of KINO Development: Prototype NINO. 62

.WK.v; : .. ~ -, ~ 4\~%4.%. 4~ % % N %~ V . . ',V %

.1,2

B.2.1 Known Bugs 62

13.2.2 Creation Functions 62

B.2.3 Destruction Functions 63

B.2.4 Description Functions (;3

B .2.5 KNOOP: Knowledge Base Operations., Irototype Vcrsion G.t -

13.2.6 Miscellaneous Functions 65

B.3 Rule Syntax 65

B.4 KNO Performance 67

B.5 Installing and Loading KNO 69

B.6 KNO Example 70

C Common Lisp Diagnostic and Bench Package 85

C.1 Loading the CLBENCII 85

C.2 Running the CLBENCII. 86

D Meter Operation Utility 87 ".

D.1 Installation of MeterOP 87

D.2 Method of Use 87

E Performance and Evaluation of Comnion Lisp Environments 89 3

F Gabriel Bench Package 93

F.1 Loading the GBENCJI 93 %
0

F.2 Running the GBENCII 93

G Gabriel Benchmarks Performance and Evaluation 94

6

H Optimized and Extended Portable Common Loops 100

11.1 Loading Optimized PCL 100

11.2 OpPCL Extensions to the PCL Specification100

I Optimized PCL Performance and Evaluation 102

1.1 Approach Taken To Improving I'CL IPerformance 102

1.2 Results of 1I. Performance Evaluation 103

1.3 Summary of P'Il Optimization Result 10()

,1.

U,

'a - - -. - % - . - - - - -- --- - - - - - - . - - - _., 7,. , ,. ,.
" % - ' "

% ,
.

, , -

List of Tables
SI

-1.1 Open Systems Interconnection Model. 2-1

B.1 Performance of ProtutYtpe]'NO9

F. 1 Benchmarks of Common Isp Function Invocation 89

E.2 13enchmarks of Coinim(,o Lis p List Operations. 90

I".3 Benchmarks of Common Lisp Array Operations 91

El Benchmarks of Common Lisp Symbol Operations 91

E.5 Benchmarks of Common Lisp Hash Table Operations 91

E.G Benchmarks of Comnon Liisp String Operations 92

E.7 Benchmarks of Common Lisp Number Operations 92

G.1 Compilation Time of Gabriel Bench Package 9.

G.2 Gabriel Bencthmarks of Function Calling and Flow of Control 95

;.3 Gabriel Benchmarks of List Man:ipiation 9(

G.A Gabriel Benchmarks of Array manipulation 97,

G.5 Gabriel Benchmarks of Nu merical, Integer 97

(.6 Gabriel Benchmarks of Numerical, Floating Point 98

G.7 (abriel lBeichimarks of Num ,erical. Big Numbers 9 9

R

A 1.1 Unoptimized PCI 10,1

1.2 Unoptimized PCI, with 100,c slot cache hit rate 10-1

D. O ptim ized IP C I .

I.-I Optimized PCI, vs. Unoptimized PCI. for Gold1lill/lI ummin.board lI' vi-
ronment

1.3 Optimized PCI, vs. Unoptimized PCI, for Symbolics/3620 EIvironi mew . 106

,..

*; 9

List of Figures

A.1 ORGAL hKeyword Combination................................ 45 'i

A.2 ORGAL Agent-Agent Relationships.......................... 5

I 0 "

'4

Chapter 1

Introduction d
'S

- The primary focus of Phase I was to prototype a development environment, ACCESS,
/ for A Communicating and Cooperating Expert Systems System. More generally, this work

explored the question of what capabilities were needed in a development environment for
embedding distributed knowledge-based systems applications on personal computer or work-
station class platforms. The stated goal of the Phase I research and development effort was
to investigate and implement a software environment for the realization of cooperating
knowledge sources on personnal computers. This system was to be Lisp based, distributed
processing was to be facilitated by message passing using TCP/IP, control was to be accom-
plished by raeta-level objects and a variety of features were to be provided to aid developers
in building such systems. Underlying these goals was the assumption that the tools needed
to support such an effort, mainly Common Lisp, Portable Common Loops and TCP/IP.
were adequate to do so. During the course of this work Symbiotics found several short-
comings in these software tools and identified a need for higher level tools to facilitate
distributed processing development. This report documents that work and the results of
the Phase I effort. /. .I/"

Symbiotics designed and implemented a language based environment to allow the user to
develop and manipulate the distributed processing aspects of the ACCESS system. Specif-
icaly, as part of the Phase I effort, Symbiotics chose to develop a high level language to
facilitate the distribution of information to problem solving agents on separate processors.
This language, ORGAL, provides a comprehensive environment for distributed processing
development on a variety of software and hardware architectures. ORGAL has the de-
sired qualities of being interactive, extensible, and intuitive. It allows the user to develop
heterogeneous distributed processing applications using an unique model for asynchronous
message passing which embodies control within the messages themselves. In this manner,
the user can distribute their application quickly and interactively while achieving maximum
computational efficiency. ORGAL is currently being ported to a variety of Lisp environ-
ments as well as to the language C in anticipation of commercial release in the fourth quarter
of 1988.

,

Another finding of the Phase I effort addresses the current state of affairs of commercial
knowledge-based system development tools. These tools were developed for stand-alone
or centralized processing and are not ideally suited to cooperating knowledge-based agent
applications. This is largely because the developers of these systems envisioned users embed-
ding their application in the shells themselves. Distributed processing utilizing knowledge-
based systems is better served by "artificial intelligence" functionality which can be embed-
ded in the application. This observation has lead to the development of KNO, an object
oriented, open architecture package for knowledge-based system development. Foremost
in the design effort of KNO was to realize the development of a set of abstractions that 7.

11%

t ,%

; - - - I | - 1 I -I I .. . : - : '

would allow the application of specialized A.I. technologies on the basis of the structure
and the function of the knowledge representated. The goal was to realize an architec-
ture that would allow the functionality of various reasoning technologies typified by Truth
Maintenance Systems, backward and forward chaining inference engines, and various rep-
resentation technologies typified by semantic nets, Krypton, rule-based, logic-based and
framed-based to be commonly representable as a coherent whole. During the design of the
KNO operation protocols, the subsequent development of the KNO rule-based represen-
tation compiler, and the development of ORGAL it was realized that a language-based
architecture coupled with specialized compilers could be the basis on which KNO would be
able to incorporate newly developed or existing artificial intelligence technologies or tools
by description instead of the more costly method of reimplementating.

The result of the Phase I effort is that Symbiotics prototyped a general distributed pro-
cessing environment for a heterogeneous collection of hardware and software platforms. It
is these findings which lay the foundation for our future work. In particular, the funda-
mental question that was resolved was, What minimal sct of generic functionality must be
provided by a development system to be able to represent an organization of problem solv-
ing agents?. The Phase I effort has resulted in Symbiotics identifying major issues in
distributed processing as well as making a significant contribution to resolving these issues.

12

_

1.1 Introduction and Specification of Problem

The ultimate goal of an intelligent system is the ability to function robustly on large com-

plex problems. We have adopted the premise of the Actor model [I1e77,IIe85b,Ag87] that

only a dynamic organization of multiple specialists or agents that are self-reflective and

can cooperate through communication can demonstrate the robustness required by large
complex problem domains. \Ve have also adopted the premise that the large variety of

successful human organizations indicates that the development of an organizational model
is dominated by the problem domain. The forms that an organization of cooperating agents

can assume covers a wide range of models. Examples of organizational models are dicta-
torial, where one agent is responsible for the procedural problem solving flow; delegatory.
where problem solving control is distributed in a top-down hierarchical fashion; or par-
ticipatory, where problem solving specialists assume subtask responsibility on the basis of
mutual consent [Ba86,Be86,DaSl,HlaS6,SaS5,Sm85,StS.1. However, whatever the organiza-
tional model, each have in common the ability to adapt to an evolving problem domain.
The goal of expert systems, logic based systems and knowledge-based systems in general is
to find solutions to tasks presented to them in their problem domain. It is a fundamental
shortcoming of these systems that they cannot minic the adaptive problem solving that is
so often found among a team of humans beings. One solution to this problem is to have
autonomous knowledge-based objects communicating and negotiating in ways analogous to
human organizations [KrSl,Ie86].

WNre are currently designing a commercial product which will provide the flexibility to capture

as many organizational paradigms as possible [SyS6]. In order to do this, one must abstract
to a level where the characteristics which organizations display are commonly representable.

To date, the abstractions identified are modes of distributed communication, description
of distributed resource state, resource management, organizational structure, knowledge
representation and knowledge processing.

Modes of Distributed Communication
Modes of communication can be discrete (e.g. agent A to agent B) or global (e.g. agent
A to all agents). Arrival and response order can be determinate or nondeterminate. The
content and intent of a communication is determined by the application requirements. To

facilitate adaptation of agents to different problem domains, an intelligent system develop-
ment environment must have a flexible communication scheme allowing for variable content,
multiple targets and different arrival/response ordering among agents.

Description of Distributed Resource State
A system composed of intelligent agents distributed over multiple environments must be able
to access the description of the state of the resources on which it relies. Resource and task

management require accurate and timely discriptions of the current state of the resource
enviroment. In a distributed environment, where agents are free to move or create new

agents, a separate development substrate for maintaining distributed resource descriptions
integrated with support services and application interfaces is required.

13

-

Resource Management
It is not uncommon for an organization to have an agenda or plan by which to proceed.
These plans normally include allocation of time, money and other resources to predefined
tasks. In fact, some proposed cooperating expert system schemes [KoS1,Ma85,Ile85a] would
not be tractable if tasks were not limited in some chosen resource. Resource management
is a capability that must be directly available to both the distributed application and the
underlying system components which it tasks.

Organizational Structure
The structural arrangement of members in an organization determines the topology of the

organization. The design decision of which organizational topologyv to use is the prerogative
of the problem domain under study. A development environment for distributed applications

must be able to accommodate a wide range of organizational topologies.

Knowledge Representation and Processing
In order to develop efficient and effective distributed artificial intelligence based applications
the knowledge presentation, knowledge processing and distributed communication resources
must be integrated in an uniform and systematic manner. Also, application efficiency and
upward evolution can only be realized by a development environment that allows the appli-

cation of specialized knowledge representation and processing on the basis of the structure
and function of the knowledge.

14

1.2 Distributed Processing and Communication

During the past twenty years many schemes for realizing distributed processing have been

proposed and a few actually implemented. To date, most of these paradigms have remained

under the auspices of both academic and corporate research departments. Related com-

mercially released products have been limited to file transfer utilities [Sp87], electronic mail

packages [Lo86] and low level remote procedure call facilities [Ne81]. The following sections

review previous work in the relevent areas of distributed processing and communication.
tihe issues involved and how tIhe Phase I effort builds on this previous work.

1.2.1 Heterogeneous Distributed Processing

Once the decision to connect two processors together has been made, the first question
which must be addressed is which processors to use. If the two processors are identical, we
refer to such a system as a homogeneous system. If they are different then the system is a
heterogeneous system. These two different cases present different problems to the developer
and thus affect the design. The vast majority of implemented systems have been done on
homogeneous systems. This is largely due to the fact that the software implementation is
greatly simplified when there is only one set of hardware, operating system, and communi-
cation specific issues to address. In addition, these same simplifying features are attractive
from a specialized parallel hardware design standpoint. These advantages together with the

locality of processors afforded by specialized hardware have greatly facilitated both synchro-
nized processes and shared memory models. These paradigms are desirable because they
are more intuitive than asynchronous message passing[Ag87] or dataflow models [AgS2] and
are therefore more quickly accepted by programmers. This is in part due to the already
familiar concepts of multi-processing environments (e.g. semaphores [Di68] and monitors
[Br75]) which can be viewed as a special case of synchronized shared memory models [Di6S].

Heterogeneous systems however, are by far the most common class configurations found in
present day computing facilities. While several authors [Li79,Br75,Ly81,An86,Ag87,11o75]
claim that their models of distributed computation are amenable to heterogeneous systems,
these systems are ill-suited for these environments. While shared memory can be useful for
certain applications on particular heterogeneous configurations [Po87], grossly inefficient
computation results in situations where locality of nodes is not possible and frequent access
of memory is required. Synchronization of processes also suffers from a loss of efficiency in
the absence of locality [Po87].

The pragmatics of supporting some of these systems on a wide variety of hardware archi-
tectures is also questionable. The Actor model of computation requires an infinite memory
store [Ag87], PPPP [PP87] and Concurrent Pascal [Br75] require a multi-processing oper-
ating system, LOCUS [PoS5] relies on the UNIX operating system.

ORGAL, developed during the Phase I effort of this proposal, may have been the first

1Al

4

"I" """" """ " ' " " """ '" "" """ "'. -'4

completed environment to use compiler technology to accommodate hardware differences
for distributed processing [FaS7]. In doing so, it is arguably the first successful attempt
at designing and implementing a distributed processing environment which promises to
be truly hardware independent and thus suitable for general heterogeneous distributed
processing.

1.2.2 Shared Memory and Message Passing

At the heart of any distributed processing system is a methodology for exchanging infor-
mation between processes. Having more than one processor requires a physical connection
be established between these processors. The only way to transmit information across this
connection is by translating that information into signals which can traverse the connect-
ing media. At the receiving end of such a transmission those signals must be collected and
translated into a form usable by the receiving process. If we refer to such packets of encoded
information as "messages", then all distributed processing systems utilize message passing
at some level.

L

Following a similar line of reasoning, a sequential processor can only execute a single in-
struction at any given time. This means that, during the process of translation, each bit
of information must be stored in a register until the entire message is translated. If we
consider such registers to constitute a form of memory, then this memory can be viewed
as being "shared" between the two communicating processes (i.e. one process writes to it
and the other process reads from it). Consequently, all distributed processing systems also
utilize a form of shared memory at some level.

IN
listorically, researchers have chosen to build their models of distributed processing based
on abstraction of one of the above underlying mechanisms. This has proven to be a fruitful
approach leading to a variety of different models based on such abstractions. While the
nature of this proposal is to use an even higher level of abstraction to obscure this level of
detail, it is instructive to briefly describe these two approaches.

Shared Memory Model

Shared memory models [Ly8l,Gr78,Br75] are useful in applications where locality of nodes
is achievable and memory access traffic is light. They are appealing largely because they
are easily understood and utilized by programmers with conventional computer science
backgrounds. This is partly due to familiarity with the concept of shared memory in
multi-processing environments. As one might expect, this paradigm of computation has
an extensive history dating back almost thirty years in the literature.

The general concept is that memory is allocated as a common store for some number of
processes. These processes may write or read this memory. To avoid conflicts arising from,

iGi

simultaneous access of this memory, synchronization of these accesses must be assured. P
There are a number of mechanisms for guaranteeing the sequentiality of these transactions
[Mo85,11o78]. Specialized hardware has been devised to efficiently facilitate these transac-
tions [Po87]. In general such architectures provide the locality of processors and fast access
memory necessary to make these models viable. Vith some notable exceptions [lIi85]. this
approach to specialized hardware design has proven to be the most commercially successful
[IPoS.]. '

Message Passing
.'

The abstraction most often cited for the message passing models is based on communicating %

objects [Bi73,Ag87]. The user is to envision objects passing information directly back and
forth to each other. These objects have taken on a variety of forms in different models as
have the semantics of the act of passing or sending messages. Essentially, message passing
is either synchronous [AnS6] or asynchronous [Ag87] and the objects involved are either
history sensitive [Ag87) or not [Po87]. The consequences of these choices have profound
effects on the behavior of the organizations formed by the message passing objects.

Synchronized message passing requires a high degree of cooperation between objects as one
object must be ready to receive when another object is ready to send. In asynchronous
models, messages may be sent and received at will requiring almost no cooperation between
objects. If the objects involved can change their behavior based on the messages they
receive then they are history sensitive. Such systems are said to be dynamic as they can i
change their behavior during the course of a computation. If the objects always process
the information received in a message in a predetermined way, then the system is said to
be static. Dynamic asynchronous models provide the most general model of distributed
computation but have proven to be difficult to program [PP87].

.-

1.2.3 Asynchronous Processing

Maximum efficiency in a distributed computation often requires that the distributed pro-
cesses proceed in an asynchronous manner. This model of computation avoids one process
needlessly waiting for another to complete. While this can be easily proved it has not
been readily accepted by the computing community as a high level programming paradigm.
This uneasiness with computations which proceed in a non-deterministic manner can be at-
tributed to the failure of existing models to embody control mechanisms for asynchronous
processing which accomodate the users perception of what a program is and d'Cs. Fun-
damentally, users tend to think in terms of programmatic behavior being completely in
their control a priori and are uncomfortable with the notion of computktions which ;Ire not
predicatable at the "line of code" level.

\Vhile it is unrealistic to anticipate asynchronous behavior at any given point in time in

17 %

S,--*...* ,.. .. , . -.. i

a heterogeneous environment with unpredictable loads on the processors involved, it is
entirely possible to develop a model for asynchronous computation which allows the user
to have explicit control of such computations within the computation itself. One does not
know the behavior of such a system prior to running it, but one could specify that behavior
programmatically to dynamicly control the computation while it is running. This can only
be done by allowing access to the state of a computation while the application is executing.
Control decisions can then be made at runtime based on the state of the computation.

In a distributed system, the state of any given computation is directly tied to the state
of the processor on which it is running. This state is not available between processors
at any point in time as communication latency negates any such information passed from
one to another. However, if one postulates a virtual machine and then passes that virtual
machine from processor to processor then the state of the computation is preserved between
processors.

This was the driving architecture behind the design of ORGAL. In our paradigm, a com-
putational stack is passed from one machine to another in the form of a message. This
computational history is availiable for inspection and mutation at each node which recieves
it and thus gives the user complete control of the computation at runtime. Preliminary use
of ORGAL indicates that this model of computation is readily understood and effectly
used by programmers with no formal training in the issues of parallel or distributed pro-
cessing. Should this observation prove to be true in the computational community at large,
the promise of heterogeneous distributed processing may become a common place reality.

1.2.4 Transparent Distributed Processing

Referential transparency [ShS6] is a concept whereby the user always utilizes the same
methodology to accomplish a task even though the actual execution of their request may be
performed in a number of different ways. An optimizing compiler will produce different in-
structions based on the environment in which any given line of a program lies. This process
is intentionally hidden from the programmer so that he/she can concentrate on higher level
design concepts. To date, the vast majority of distributed processing environments have re-
quired the user to explicitly deal with distributed computation issues at either the message
passing or shared memory level. Part of the Phase I effort was to understand and develop
supporting substrates for the transparent distribution and execution of cooperating knowl-
edge sources. This model is based on an object oriented abstraction much like the message
passing models while making the methodology of information exchange totally transparent
to the user. The system itself will determine whether shared memory or message passing
paradigms are appropriate in the context of a given organization of knowledge sources. This
allows the user to concentrate on the organizational behavior of their application and not on
the mechanisms required to support the distributed configuration. It is this characteristic
which distinguishes ACCESS from its predecessors.

1,8

-jI

1,77 "- 77 .1-7 .7

Chapter 2

Technical Objectives

2.1 Communication Substrate Technical Objectives

The cominunicaton substrate provides low-level reliable delivery of message packets from
one node to another on a network. For the Phase I effort this substrate was to be Ethernet
cable andl the Internet Protocols.

2.2 ORGAL Technical Objectives

The ORGAnazational Language, ORGAL, provides the methodology for defining and
distributing computations between heterogeneous computing environments. It is designed to
provide an interactive, extensible and intuitive environment for development of distributed
processing applications. Technically, ORGAL is based on an asynchronous message passing
model which uses a unique control mechanism by which the user can embed runtime control
strategies. The ORGAL compiler makes use of delayed evaluation and object oriented
database design to acheive hardware and application independence. While the ultimate
objective was to provide a message passing protocol for co:nmunicating expert systems, the
ORGAL system was intentionally designed to be a general purpose tool for distributed
processing.

2.3 KNO Technical Objectives

Knowledge Objects, KNO, is the substrate component of ACCESS that offers an uniform
interface in the form of generic operations on distributed knowledge-based processes. The
major technical objective of the development of the KNO substrate is the development of
a set of abstractions that will allow the application of specialized reasoning technologies
on the basis of the structure and function of the knowledge. The abstraction level must
be sufficient enough that the functionality of various reasoning technologies are commonly
representable in one descriptive substrate.

Basic KNO differentiates itself from other high-end commercial knowledge engineering
tools, such as ART [Inf87], KEE [In85] and KnowledgeCraft [CG87] as it is designed to
be embedded in applications as opposed to applications being embedded in the knowledge
engineering tool. Direct support of input-output functionality by these tools is prohibitively
narrow. I/O functionality consists almost entirely of sophisicated user interface utilities that
require the Artificial Intelligence development tool to be used in an interactive mode. In

19

'p..

_. _'

fact, these user interfaces can account for more than half of the product's development and
maintainance costs. In order to perform basic I/0 with files, databases and other processes,
the application developer must patch in their own application specific I/O functions.

Basic KNO consists of standard and well-understood knowledge representation and knowl-
edge processing technologies. A KNowledge Object is a knowledge base which is treated
as an abstract data type. The KNO interacts with an user or system application only
through a small set of operations. This design strategy is based on the functional approach
proposed by Levesque and Brachman [Ba83]. This approach requires a knowledge base to
be specified functionally, ignoring how the knowledge base is implemented.

0.

.

20

a1

A'

Chapter 3 -

Problems Encountered During Effort

The major stumbling impediment to the our Phase I effort was the development of AC-
CESS using available commericial software. The two major difficulties encountered were
the available Common Lisp environments on personal computer class machines, and the
corresponding distributed communications packages available.

3.1 Common Lisp and Personal Computers

The greatest difficulties were due to the inadequacy of purchased software to meet our
development needs. This is in part due to the fact that all available required software was
in a beta-test phase. More specifically, the only personal computer class Common Lisp
implementation available at the beginning of this contract was Gold 1lll's Beta Version
2.9 Common Lisp. As of the writing of this report the final release version 3.0 has been
shipped. This version of GCLISP, in our opinion, is marginally acceptable for serious Lisp
development. Nonetheless, we were able to port Lisp code developed on Lisp machines to
this environment. There is cause to be optimistic about serious Lisp environments on PC
class machines. During this effort PowerLisp became available as a beta-test product and
we have found this to be a promising development environment. In addition, Symbiotics
will be beta testing Gold Hills 32-bit version of Lisp developed for the 80386 processor.
This version promises to be a significant improvement over the present 16-bit Lisp which
was used during this contract.

3.2 Porting Lessons Learned

The initial attempt to port Symbiotics software from the Symbolic's Lisp Machine was a
pW

total failure. There were four basic reasons for this failure, only two of which could have
been anticipated. The reasons were inefficient garbage collection, unoptimizing Lisp com-
piler, no virtural memory support and a primitive development environment. The last two
elements; no virtual memory and a primitive development environment, although not ad-
vertised, were well known "features" of the Gold Hill, and to be fair other, Lisp development
environments currently available for the personal computer class platforms1 . Anticipating
this, Symbiotics had planned during the Phase I exploratory effort, to simply move over
code that it had previously developed in the Symbolic's Lisp Machine environment [Sy86].
This code consisted of FBI, which was to provide the rule based knowledge representation

'The exception to this is a Lisp available for 80286 and 80386 class machines. PowcrLisp, available from,
MicroProducts, has virtual memory support upto 30 Megabytes.

21

% a.

and forward and backward inference knowledge processing capability, a Prolog iniplementa-
tion, and FMO, a frame based representation that interfaced with FBI. The FBI, Prolog
and FMO were to provide the knowledge representation and knowledge processing capa-
bility for our Phase I research. Using the port of this code as the starting point, Synibiotic_
planned to spend the major part of the Phase I effort on the research and development
of the Communicating Expert System Message Passing Protocol, CESMPP, and the high
level specification of knowledge-based agent behaviors such as the Receptionist, Manager
and Sponsor [Sy86]. During the Phase I effort the CESMPP evolved into the development
of ORG AL.

Our software made heavy use of the object oriented fiiistrate ' by the Symbolics
Lisp Machine, namely Flavors. We had an<I6pated this and had proposed porting and
optimizing CommonLoops to the PC envircevnient as a comparable replacement to the object
oriented functionality offered by Flavors. The first stage c? ihe port eff.rt was to optimize
CommonLoops [BoS6,BoS7] for speed for the Gold Iill Ccr .mon Lisp environment. 2 It
was during this effort, that it became apparent that the Goid 'llill compiler was less than
expected and the garbage collector was less than optimal. Iaring the rtttempt to optimize
CommonLoops, we became aware m" .-'eral characteristicf ,A the Goli iIill Lisp compiler
that, since we were using a beta versio.., we thought were !bugs. \\pa. !his point stopped
our CommonLoops effort and developed a Cormmo.n Lisp venchmark .,a, test suite base on
the Gabriel benchmarks 3 [GaS5] and a tesL %izite o over 100 Comru1 Li..p functions ". We
discovered through experimentation with these todi. and rubseqw-ent diic¢ussion with Gold
IIill technical developers that their adverl,;F.ed benclrmar@s %,,ne misrr-::T'esentative of the
actual product. Basically, the Gold 1lill benchmark res-ultE ' wre obtai& by a simulated
compiler. The assembler code generatod by their compiler fcr tute bertrrnarks was further
converted by human hand into a form r.ie would realize if an optiraai cctn.piler were available.
The result was that we did achieve a signfu.,-An speed up in ,Cinnmm.J_(,)ops but that FBI
and our other software was going to have ,o be c,-no,'mtelv Y ..written in order to fit within
the limits imposed by the Gold tlill Lisy compiler, address spa:e and .4,:rbage collector.

3.3 Networking and Comflmu nicat ions

The other significant hurdle which had to be overcome was developing a medium for inter-
processor communication. While we were able to develo- i use our own implementation
of the Internet Protocol [St88], this proved to be too low lev6u a mechanism to facilitate the
flexible and adaptive system design which we had originally stecified. While implementing
ACCESS a need arose to develop a language for describing various potential configurations
of both expert systems and prolog systems. In doing so, we developed a substrate language
for message passing, ORGAL, upon which we could implement features peculiar to the
domain of communicating knowledge sources.

2This work is documented in Appendix I.
3 For results of the Gabriel benchmarks study see Appendix G.
'For results of the Common Lisp performance study see Appendix E

'22

%rr wd .A 46 e le r

'"

Chapter 4

Approach and Results

A distributed processing environment which uses heterogeneous computer resources requires
an entire suite of communication protocols. Each protocol in the suite has various comniu-
nication responsibilites. To help organize and standardize the various protocols that can
arise, the International Standards Organization (ISO) has developed a networking reference
model, the Open Systems Interconnection reference model (OSI) [ISO79).

The OSI is a hierarchical model composed of seven layers. The layers, from bottom to
top are Physical, Data Link, Network, Transport, Session, Presentation, Application. This
model is shown in Table 41. This model will serve as reference when explaining the various

components that comprise the ACCESS architecture.

Presently, the ACCESS system can be broken into three distinct parts:
I

.'a

1. IP, the Internet Protocol, written in MicroSoft C. %

2. ORGAL, the ORGAnational Language providing a high level message passing pro-
tocol, implemented in Gold lill GCLISP, PowerLisp (MicroProducts), Symbolics and
Franz Common Lisp.

3. KNO, an object oriented knowledge representation and knowledge processing sub-
strate.

Each of these layers will be described and discussed in the following sections.

4.1 Communication Substrate

Fundamental to the success of ACCESS is a medium and protocol which allows processors
to communicate information to each other. The initial prototype environment utilizes an
IP[CS21 implementation. While this protocol has proven sufficient for proof of concept pur-
poses, it does not guarantee message delivery. Currently, TCP[C182] is being implemented
on top of IP to provide this necessary characteristic of robust distributed processing system
design. Future implementations will incorporate the OSI model as well.

23

M'

Table 4.1: Open Systems Interconnection Model

Application Defines network applications available to user.
Presentation Translates format and syntax of data for interchange

across different computers
Session Allocates host resources. Handles sign-on and authentication of client.

Allows reference of devices by name rather than network address.
Transport Defines addressing and connection protocols

for physical devices on network. Guarantees message delivery.
Network Defines routing and relaying of message packets between networks.

Defines protocols for sending status messages to networked computer.
Data Link Defines protocols to access network for message

transmission and reception. Establishes shared use of physical media.
Physical Defines electrical and mechanical characteristics

of physical connection. Defines topology of network.

4.1.1 Ethernet Layer

The Ethernet standard is an integral part of the OSI. Ethernet is a multiple-protocol
medium, several different networking protocols can run on it simultaneously. This ca-
pability allows the connection of all types of computers without having to install a different
type of cable for each connection using a different protocol. Ethernet fulfills the Physical
and Data Link layers of the OSI model.

Orignally designed at Xerox in 1976, Ethernet is a high-speed communications medium that
allows information to travel over the network at upto 10 Mbits/sec. Because Ethernet is
also a standard adopted by the Institute of Electrical and Electronic Enginneers (IEEE), the
majority of computer vendors support the Ethernet standard. A sampling of computers that
support the Ethernet standard as standard hardware configuration or with add-on boards
are the Cray family, the VAX family from DEC, the IBM PC family, the Sun Microsystems
family, the Apollo family, the Svmbolics family, Texas Instrument's Explorer I and II and
the Masscomp family.

4.1.2 IP: Internet Protocol Layer

The lowest level of communications implemented during this effort was an Internet Protocol
in MicroSoft C version 4.0. While this mechanism is intentionally hidden from the user. it
is noteworthy in that IP servers are available on virtually all hardware platforms of interest ,
[St88]. Therefore, relying on the existence of an internet protocol does not inhibit the %
portability of ORGAL to heterogeneous environments. The original Internet Protocol code
was obtained from the Massachusetts Institute of Technology [Ro8G,SaS6]. This version was
written in a dialect of C developed at MIT. The first task was to port this code to MicroSoft

2.1

" :;" "-"<'" " "''" "'"" .""-', > "-' " "," "" ''" ; : ";"" :""'" " " ," ""'""7""'' :'::':";" <";'/' %'';U

C version 4.0. This was necessary because of the three languages currently supported: Gold
Slill Lisp, ALS Prolog and PowerLisp. The first two provide a foreign language interface to

this version of MicroSoft C. PowerLisp only supports an assembler language interface. In the
case of PowerLisp, we also had to develop an assembler language to C interface which allowed
us to run our terminate and stay resident C routines in conjunction with that environment.
Between the ported internet protocol code and ORGAL a small amount of C code had to
be written to initialize the network, check the IP message queue for received messages, and
to prepare messages for transmission to other platforms. Communication between ORGAL
and these C routines is accomplished via passing ASCII strings in both directions. Most of
the parsing and interpretation of the strings which are exchanged between these routines
and ORGAL is currently done in Lisp. One of the goals of the future objectives is to push
these tasks down onto the C substrate of the interface.

During Phase I only coaxial cable configured with 3Com's Ethernet controller boards on
PC/AT workalikes were investigated. The execution of the IP was borne by the PC/AT
processor. This combined with the fact that the 3Com controller board acts only as a
transceiver limited to 8-bit-wide bus access resulted in a peak 50 Kbits/sec rate for large
block transfers. For smaller packets, the effective data transfer rate is on the order of 10

Kbits/sec.

4.2 ORGAL - A Tool for Distributed Processing Development

A complete discription of ORGAL is given in Appendix A.

The technical objective of ORGAL was to provide developers with an interactive, extensi-
ble and intuitive model for distributed application development. Development of such a tool
was necessitated by the absence of commercial products which provided these fundamen-
tal characteristics. The approach taken was to develop a language based environment for
describing distributed computations. This decision was motivated by the observation that
compiler technologies could provide hardware independence thus allowing heterogeneous
distributed processing. Another design decision was to use an object oriented abstraction
for describing a distributed system. This seemed appropreiate as the familiar concept of
a network of nodes with applications programs on them mapped naturally into an object
oriented paradigm. Simple mechanisms for saving and debugging the state of the system
were also design goals of ORGAL.

4.2.1 The ORGAL Model of Distributed Computation

ORGAL distinguishes itself from other distributed systems in both the specification and
control of a distributed community of processors. Specification is done by defining objects
which embody the intended computations an(d hardware platform characteristics required
for a particular distributed computation. Distributed control is facilitated by passing a

A 25

, LN46.4

42."

.4

computational stack along with each message. Execution of a computation is then accom-
plished by passing a stack from one user defined object to the next. Objects have access
to this stack and can dynamically control the computation. A default or cliche behavior
for message passing is inherited by all computational objects. This behavior facilitates dis-
tributed message passing while providing a mechanism for capturing the result of a foriegn
computation asynchronously. While the system does not currently support fully persistent
objects, it does maintain a database of object definitions which are accessable by the user. Z

4.2.2 ORGAL Phase I Results

The original goals of ORGAL were to provide a development environment for distributed
processing applications. The prototype system implemented for the purpose of proof of
concept has accomplished that goal. The prototype has served to clarify many of the
issues of distributed processing in general. Symbiotics Inc. is currently reimplementing
ORGAL to facilitate more efficient execution and provide more functionality. ORGAL
will be released as a commercial product in the fourth quarter of 1988.

A detailed discription of ORGAL is included as an appendix to this manuscript. The
interested reader is encouraged to read that appendix for a complete discription of the
ORGAL system.

4.3 KNO: Knowledge Objects

Knowledge Objects, KNO, is the substrate component of ACCESS that offers an uniform
interface in the form of generic operations on distributed knowledge-based processes. Sys-
tem efficiency and upward evolution is realized by a development environment that allows
the application of specialized knowledge representation and processing on the basis of the
structure and function of the knowledge.

4.3.1 KNO Design Strategy

Since Symbiotics had to expend a considerable amount of effort in redesigning and recoding
the knowledge representation and knowledge processing substrates to be used by ACCESS,
we spent some time examining the current state of the art in knowledge engineering tools.
In our Phase I effort, we wanted to develop a basic platform that would define an extensiable
architecture on which future Phase II effort could continue. We decided to implement from
the ground up a knowledge engineering environment with rule-based representation and
forward inferencing. This effort would fully explore the issues involved in implementing
A.I. technologies in a PC Lisp environment.

The initial design issues of KNO were in response to the lessons learned in enhancing

26

d'-_

-*',- . -'-',, -A,.

CommonLoops in the Gold 11111 PC/AT environment, the experience one of us (RCP) had
just recently gained in porting code from the Lisp Machine to the Sun/Franz Common Lisp
environment, and the garnered experience of other people who were involved in the porting
wave from Lisp Machines to more conventional platforms that was sweeping "A.I. Alley" in
the fall of 1987.

These design decisions were:

1. Garbage collection in Lisp environments, such as Sun/Franz Lisp. VAX Lisp and Gold
Hill Lisp, is undependable at best. KNO must achieves almost total self reclaimation
of all of its dynamic data structures. This is of strategic importance for any package
that is expected to support applications that would be beyond the "toy" level.

2. Do not depend on the native Lisp compiler to make optimizations,. Lisp macroex-
pansion is usually on a "as is" basis. Compiler optimizations such as compile time
data type checking, caching of temporary data structures in hardware registers or on
the stack instead of of allocating from the heap, and compile time evaluation of code
with the inline substitution of constants are not available on conventional machine
environments.

3. hNO must have its own compiler for each knowledge representation. Each compiler
would generate basic Lisp code that was optimized for the knowledge engine. The
resulting code will execute with a minimum of garbage production.

4.3.2 KNO Phase I Results

Foremost, in the design effort of KNO, the replacement for FBI, was to realize the develop-
ment of a set of abstractions that would allow the application of specialized A.I. technologies
on the basis of the structure and the function of the knowledge representated. The goal
was to realize an architecture that would allow the functionality of various reasoning tech-
nologies typified by Truth Maintenance Systems [Do79,Mc82,Ba83,Dk86], backward and
forward chaining inference engines, and various representation technologies typified by se-
mantic nets, Krypton [Br83], rule-based, logic-based and framed-based to be commonly
representable as a coherent whole. Efficient integration of a new tool in an existing en-
vironment usually requires redesign and modification of the internal data structures and
state manipulation machinery of either the tool being incorporated or the incorporating
environment or both. During the design of the KNO operation protocols, the subsequent
development of the KNO rule-based representation compiler, and the results of developing
ORGAL it was realized that a language-based architecture coupled with specialized com-
pilers could be the basis on which KNO would be able to incorporate newly developed or
existing artificial intelligence technologies or tools by description instead of the more costly

*: method of reimplementating both large parts of KNO and the package being added.

In the design of the KNO, knowledge resources are used as abstractions provided to the
developer for the collection of related knowledge under a given context. There are no

27

5.. 6 ,*6. . S %'S. 5 ** . 6- :A**6,~-~----------------5.

scheduling schematics associated with the creation of a KNO. Because of the defined set of
generic operations that can be performed on a KNO, knowledge processing and scheduling
is separated from the knowledge represented in a KNO knowledge base.

A detailed smninary and reference manual of a prototype version of KNO developed during
the P'hase I effort is given in Appendix B.

.. 8

Chapter 5

Summary of Phase I Effort

Traditionally, arguments for developing distributed processing models centered around sig-
nificant gains in computational efficiency. While this is still a strong motivating force for
such work. recent work in artificial intelligence and cognitive science [MiS6,Ru87] suggests
that parallel distributed processing is an intricate part of th' human problem solving pro-
cess. In order to take advantage of these observations, the field of distributed artificial
intelligence has emerged. The Phase I effort of this proposal was an attempt at prototyping
a distributed system of cooperating knowledge sources motivated by the above considera-
tions.

In particular, in order to make advancements in the field of distributed artificial intelligence
one must first find a suitable solution to the more general problem of distributed processing.
Our first attempt at overcoming this problem resulted in the creation of ORGAL. While
this has proved to be a powerful state of the art tool for configuring cooperating knowledge
sources it still requires that the user have an understanding of distributed processing con-
cepts. As the intended goal is to investigate the various organizational behaviors of problem
solvers and not distributed processing issues in general, this requirement seems unsatisfac-
tory. To correct this situation, Symbiotics proposes to build higher level tools which relieve
the knowledge engineer from addressing these issues altogether. While the underlying ex-
ecution of these higher level substrates will make use of ORGAL like technologies, this
process will be completely hidden from the user.

The naive user should not have to address issues of distributed processing, software develop-
ers and sophisticated users need the ability to access the ORGAL environment to develop
their distributed applications. ORGAL is attractive to this community as it will be the
first distributed processing tool of its kind available commercially. However, as discribed
below, some development must be done to take ORGAL from prototype to a commercial
product . Most notably, TCP/IP will replace IP and object persistence and fault tolerance
must be addressed.

Another finding of the Phase I effort addresses the current state of affairs of commercial
knowledge based tools. These tools were developed for stand-alone or centralized process-
ing and are not ideally suited to cooperating knowledge source research. This is largely
because the developers of these systems envisioned users embedding their application in the
shells themselves. Distributed processing utilizing knowledge sources is better served by
functionality which can be embedded in the users application. This observation lead to the
development of KNO, an object oriented, open architecture artificial intelligence system,
during Phase I.

29

r 6 W W

5.1 Summary of Distributed Communication Results

The choice of Internet Protocol[C182] as the low level message passing mechanism was driven
by ease of implementation and thus rapid realization of this prototype system. ORGAL
must support guaranteed message delivery between environments to be of practical use.
The commercially released implementation will use a higher level protocol. TCP/IP[CI82
is the protocol of choice as it guarantees message delivery and is available for all hardware
platforms of interest.

5.2 Summary of ORGAL

The feasibility of actually realizing the full power of cooperating knowledge sources is cur-
rently limited less by any theoretical problems than by the current state of both available
hardware and software platforms. As there are a number of existing knowledge-based and
Prolog-based application development tools available which are suitable for various tasks
running on various hardware platforms, a truly general system must allow as many of these
hardware and software platforms as possible (i.e. a truly heterogeneous distributed pro-
cessing environment). It is our conclusion that the fundamental tool which determines the
feasibility of realizing cooperating knowledge based systems is a methodology for facilitat-
ing. interpreting and controlling the information flow among these various hardware and
software platforms. The approach we feel is most likely to succeed both technically and
commercially is to develop a langauge based environment for doing so.

Our prototype environment, ACCESS, solves many of the above problems by supplying the
developer with a means, ORGAL. of interactively specifying both hardware and software
configurations at a single workstation. Modifications as well as new functional descriptions
entered at one workstation automatically propagate to the targeted environment.

While ORGAL is presently a powerful tool for distributed processing development, there

is need for improvement. With the exception of the IP, ACCESS is predominantly a Lisp
based system. This was purely motivated by the ease with which one can develop language
compilers in the Lisp language. It is currently possible to include non-Lisp based packages,
as we have done for ALS Prolog. However, agents defined as gateways to these systems
must reside on the sending Lisp Environ and specialized C code must be written on the

target Environ to accommodate them.

ORGAL uses asynchronous message passing to allow maximum utilization of processor re-
sources. Currently, there is no mechanism to protect against the possibility of simultaneous
access of Agents. This is not a problem in the uni-processing environment of the PC/AT
where sequentiality is guaranteed. However, in a multi-processing environment this is a
possibility and some mechanism [Mo85,Gr78] must be adopted to guard against it.

\Vhile ORGAL succeeds in providing asynchronous message passing capabilities there are

.30

applications where synchronous message passing and shared memory models are desirable.
It is possible to implement these paradigms in ORGAL as it is currently designed. However,
primitives to support these often cited methodologies could be added to the specification of
ORGAL, offering a richer functionality to the end user. In addition, similar conclusions can
be reached regarding fault tolerance methodologies. It is intended that future enhancements
of ORGAL will incorporate fault tolerance functionality.

Finally. ORGAL currently requires the user to have a certain familiarity with distributed
processing concepts. Of all of the suggested models for distributed processing asynchronous
message passing models are the hardest to implement, the most general and thus most
powerful, and the hardest for programmers, who are more familiar with conventional archi-
tectures, to use. Since the domain of this research effort is limited to cooperating knowledge-
based systems, we maintain that it is possible to completely hide the burden of distributed
processing issues from the application developer. Just as a compiler makes the ORGAL
language portable and hardware independent while hiding the details of interprocessor com-
munication, another compiler could compile an even higher level declarative language down
to the level of an ORGAL specification. In this way, knowledge engineers can focus on the
artificial intelligence development aspects of cooperating knowledge-based objects without
regard for the distributed processing issues which they currently must address in ACCESS.

5.3 Summary of KNO

One of the major findings of the Phase I effort addresses the current state of affairs of com-
mercial knowledge-based system development tools. These tools were developed for stand-
alone or centralized processing and are not ideally suited to cooperating knowledge-based
system development. This is largely because the developers of these systems envisioned
users embedding their application in the shells themselves. Distributed processing utilizing
knowledge sources is better served by functionality which can be embedded in the users
application. This observation lead to the development of KNO, an object oriented, open
architecture package for knowledge-based system development. Foremost in the design ef-
fort of KNO was to realize the development of a set of abstractions that would allow the
application of specialized A.I. technologies on the basis of the structure and the function
of the knowledge representated. The goal was to realize an architecture that would allow
the functionality of various reasoning technologies typified by Truth Maintenance Systems,
backward and forward chaining inference engines, and various representation technologies
typified by semantic nets, Krypton, rule-based, logic-based and framed-based to be com-
monly representable as a coherent whole. During the design of the KNO operation proto-
cols, the subsequent development of the KNO rule-based representation compiler. and the
development of ORGAL it was realized that a language-based architecture coupled with
s,)ecialized compilers could be the basis on which KNO would be able to incorporate newly
developed or existing artificial intelligence technologies or tools by description. A language
based architecture that can capture the syntactic and semantic description of an artificial "
intelligence system's supporting substrates will extend the current generation of Al-systens'
ability to understand and modify themselves. The same semantic power of expression that

31

,a

allows an application to reason with its own representation presents a homogeneous devel-
opment environment for the human developer of the application. The homogeneity and
semantic descriptive power of a development environment which is language based allows
newly developed or existing artificial technologies to be easily incorporated instead of being
reim plemented.

3,

5, I'

• 32

' .\ . q ,a \ i. .U?- 14~p ' ~ ~ *~

Chapter 6

Future Work

6.1 Future Direction In Communcation Substrates

For a long time, fiber-optic cable has been suggested as a replacement for coaxial cable.
Fiber-optic cable has a greater range than coaxial, upto 100 kilometers. It is effectively im-

mune to electromagnetic and radio-frequency interference (EMI/RFI), thus reducing noise-
induced network errors. This last quality makes installation of fiber-optic cable appropriate
in ENII/RFI susceptible areas. Fiber-optic cable can not be short-circuited, making it a
viable media in wet environments. A fiber-optic based network is more difficult to tap into
illegally, making it more secure than coaxial based networks. Physically, fiber-optic cable
is smaller, lighter, more flexible, and more elastic than coaxial cable. These properties sim-

plify cable handling and installation. While the cable itself may cost more, it may be less

expensive to install and maintain than conventional coaxial cable.

Symbiotics expects that there are many real-word distributed applications whose peak and
perhaps average bandwidth requirements can exceed the 10 Mbit/sec capacity of Ethernet.

The Fiber Distributed Data Interface (FDDI) standard for fiber-optic data transmission is
in the final stages of specificiation. This standard specifies a bandwidth of 100 Mbit/sec
and is a complementary replacement to Ethernet replacing the Physical and Data Link

layer of the OSI model. This forefront technologv is currently experiencing rapid evolution.

Advanced Micro Devices just recently announced a chip set which represents the first silicon
implementation of the FDDI standard [EDST]. Symbiotics expects that network controller

boards incorporating the AMD chip set or an equilvalent chip set will become available
in 1989. With the network protocol implemented in silicon, access times to distributed

%. memory can approach those of access times of local memory on a PC/AT bus. Depending

on FDDI based product availability during the course of a possible future Phase II effort,

the feasibility of a distributed communication substrates that use FDDI media will could

be developed. The current design of ACCESS's communication substrate the is spread over
the Session and Presentation layers of the OSI and should require minimal changes where it

interfaces to the TCP substrate at the Transport layer and the IP substrate at the Network

layer. The largest effort of work would be involved in the restructuring of the IP substrate
at the Data Link layer of the FDDI where it previously interfaced to the Ethernet.

6.2 Future Directions in Distributed Processing

Based on our Phase I work and current ongoing work Symbiotics has identified three

separate functional siihstrates that ORGAL will be separated into:

5 33

.5 %.5% V.D% .~.V%5

D 4S ~%S ~~% S

1. DDSS
Distributed Data Structure Substrate, DDSS, is an extensible substrate designed for the
movement of data between heterogenous computing environments. The substrate supplies
the underlying communication facilities for distributed data state maintenance, resource
access and interprocess communication.

2. DRDL
Distributed Resource Description Language, DRDL is a representation language for de-
scribing resources, maintaining those descriptions, and performing efficient computations
with the descriptions in the context in which they are to be used.

3. ORGAL
ORGAL is a language for the representation of the interactions and relations of members
in an organization. It will be designed to evolve into a language capable of describing
organizational representations such as social rules and ordering laws.

6.2.1 Future Directions of DDDS

The DDSS will support various distributed data types for communication between multiple
distributed processes in computing resource environments that are reliably connected. Data
transmission is guaranteed over physically reliable media. Exception handling due to data
transmission failures will not be supported by the DDSS. Fault tolerance due to layers at
and below the Presentation Layer of the OSI model (see Table 4.1) is application dependent
and is handled at the Application Layer. The DDSS should be considered a service whose
interface is at the boundary between Presentation Layer and the Application Layer of the
OSI model.

The DDSS is designed to support communication among multiple processes executing on
multiple computational resources. The design will be based on an object-oriented architec-
ture [Co86]. The DDSS provides the ability to create multiple independent communication
paths and thus will be able to support concurrent processing. The DDSS will provide the
application developer with an uniform interface based on generic functionality. In order to
specify the attributes of the communication, the application requests from ACCESS the
desired flavor of resource. In this manner, the uniform interface to the DDSS shields the
developer from the environment dependent implementation details of a particular type of
data structure and the implementation of its state accessors and mutators.

Data structure and any future data structure types whose description is captured by the A

DDSS will include descriptions of the implementation of methods which access the state
of the data structures. The result will be DDSS facilities that can be compiled into their
specified implementations as well as a formal description of their semantics. The emphasis
of the first part of the DDSS development effort will be to investigate and develop the basic
features that the DDSS requires for supporting efficient distributed artificial intelligence
applications and distributed processing applications in general.

3."

3, N N_ "A-
.5.

In the process of compiling substrates represented in the DDSS, assumptions about the
implementation representation of the distributed data structures and context and use of
the functions that operate on these data structures can be used for optimization. The main
design issues that will be addressed are:

1. What high lerel abstractions does the DDSS need to support implementation dscrip-
tions?

2. Can a general set of abstractions be found or a general protocol be describcd that cot'crs
a broad range of communication media and methods?

All accessible nodes must be described in the DDSS database. Each node description
contains descriptions of all media it can access. Communication between one node and
another can only occur when both nodes share a common network. Each network provides
a separate address space in which that network's resources can be uniquely referenced.
Consequently, all resources on a network can be addressed uniformly. Automatic routing
across multiple networks is not provided.

DDSTypes are the distributed data structures which are designed to give the look and
fccl that an application developer might normally experience if working with standard data
structures. DDSTypes are designed for overall integration with the object oriented style
that distinguishes all of the interfaces into ACCESS's functionality. DDSTypes present
to the application developer a standard model for reading and writing the state of data
structures while at the same time minimizing the details of implementating distributed
state across multiple computational resources.

.

The DDSS supports an extensible family of DDSTypes. Each type of DDSType is
accessed through a generic set of operations or protocol. The DDSType is chosen based
on the immediate communication need. In general, DDSTypes are not reusuable but are
explicitly deallocated after the communication is finished.

Different DDSTypes and protocols will be designed for different types of distributed com-
munication needs. From the application developer's perspective, all DDSTypes of a certain
type obey the same functional contract as specified by their protocol independent of the
network they are instantiated on. The actual implementation of a DDSType and the

- nimplementation of its protocol may differ over different media but the interface will remain
the same.

6.2.2 Future Directions of DRDL

DRDL is a structure based representation language for describing structured objects, in
this case resources, and their relationships with other distributed resources in the domain
of distrib~uted processing applications. The DRDL is a knowledge representation language

43.

which is a conceptual hybrid of frame-based languages, predicate logic, and functional
languages. The eventual goal in developing the DRDL is a representation language suitable
for capturing high-level descriptions in declarative form that can be used by other tools,
services and user applications. The major technical objectives satisified by the DRDL are:

Functionality
The level of representation or granularity of a resource description stops approximately at
the level of describing what a resource does. It is assumed that there will be very little
or no representation of how a resource does what it does. This suggests that a resource is
described by its functional behavior and that a representation of how this functionality is
accomplished and the definition of the functionality is at best implicit.

Representation of Properties
Although most of the description of a resource is a description of the functionality, there
will exist other types of properties that are not classifiable as functional but rather are
relational in nature. The description of a resource must be able to uniformly represent both
functional properties and properties that are specific to the resource itself.

Classification
Resources naturally break themselves up into classes based on their functionality. These
functional classes can be further subdivided by other properties. These properties are e
usually more specific functionality such as speed, size, manufacturer quirks or any other
property deemed important. The description of a resource must be able to represent where
the resource resides in the taxonomy of all resources. New resource classes can be defined
in terms of aggregates of other resource classes.

Relationships r
A resource is not necessarily an autonomous object. A resource can have one or more rela-
tionships with another resource. In many cases, the relationship with another resource is an ov
interdependency that will effect how a resource is to be used and thus must be represented.
An obvious example of an interdependency is a resource which is the shared memory of 4,
two processor modules and resources which are the processors themselves. One processor
resource is effected and thus interdependent on what occurs in shared memory due to the "

other processor. The description of a resource must be able to represent interrelaionships

in an uniform and efficient manner.

Extensibility
The description of a resource can change over time. For example, a resource can move,
cease to exist, come into existence or even have its functional behavior change due to
hardware modification. Also of major consideration, is that the description of functionality
and classific!, ion of resources can evolve. New technology may result in the need to create
a new classification. The representation scheme chosen must be able to adapt to changes
in the type of description and in the level of description. All of these considerations require
that the description be easily accessible by the application developer, by product support
and ly executing processes.

36

' .m

- -. V I - . T 7 7 7W I - .

Introspection
The description of a resource should support the ability of a resource to access its own
description. The ability of a resource or any process to access the state of a resource allows
upward extensibility of services without extensive coding efforts.

Self-Descriptive

The DRDL should be almost completely self-descriptive, relying on a small set of implicitly

defined kernel attribute constants and prototype frames to implement the descriptions of all
other elements in the DRDL universe. Self-description is necessary for any representation
that attempts to be declarative. Self-description allows extension and modification of the

% DRDL's initial base and capabilities.

Type Checking
The DR.DL will include a set of attribute constants which can be used to describe the
type of a class of object sentences. In the case of creating a description it is possible
to specify values which are of an illegal data type for the context in which they will be
used. Additionally, although the data type of a value assigned to the property of a resource

description may be correct, it may be of a magnitude that is physically out of range. Both of
these errors, if not checked at the time of the resource description creation or at the time of

resource declaration, can go unnoticed until the resource is allocated and used. Obviously,
it is better for errors to be caught at the time and place they are created. This is especially
true in the case of the distributed application domain where errors during operation can
be very costly. The distributed application domain tends to deal with applications which

can not tolerate fatal errors during operation. Debugging a propagated error in distributed

process is unusually difficult as flow of processing can be indeterminate and global state is
not localized.

Separation of Class and Instance
A strict distinction between classes and instances of classes is enforced. The set of all re-
source classes corresponds to a dictionary of types of resources. A term in the dictionary is
convenient for describing a resource as it carries within its definition a set of default proper-

ties. The set of all declared resources corresponds to a database of the current configuration

of the resources in the environment. The separation of resource class descriptions and in-
stances of classes allows management operations to be performed on one without effecting

the other.

Archiving to File

As a system evolves, reorganization of the declared resources and to a smaller extent reorga-
nization of the descriptive classes of the resources is inevitable. The application developer
will require archiving tools that allow him or her to incrementally save or load either a
configuration database of declared resources or a dictionary of resource class descriptions.

Describing Necessary Conditions
When referencing an unique resource, the description of a resource must contain a set of

properties that allow the resource to be distinguished uniquely from all other resources.

37

S.. * , ,' .',' ,_,'.' ,'.
.
.-.'.... .*.",".,." " ". .". 'i' ¢'''. .,>¢..',' .,.. '-

-7a

The ability to reason about necessary conditions is the ability to find the unique resource
that best satisfies a set of given constraints. The ability of a service, such as a resource

manager, to be able to reason about necessary conditions requires that the declaration of a
resource result in an unique description.

Describing Sufficient Conditions
The ability to reason about sufficient conditions is the ability to find the set of all resources
that satisfy a set of constraints from all declared resources in a timely manner. This ability
requires that the declaration of a resource support updating the membership lists of classes
with which it shares common properties.

6.2.3 Future Directions with ORGAL

The original goals of the ORGAL system were to provide users with a high level tool for
development of distributed processing applications. Our expectations for any software tool 0
were to be fulfilled for ORGAL as well as ACCESS in general. For any system these are:

1. Interactive.

2. Intuitive.

3. Extensible.

4. Robust.

Of these we believe we accomplished the first three to a large degree and knowingly ignored r

the last. Robustness in a distributed system entails addressing issues which do not exist in a
single processor environment. These issues fall into two broad categories, persistence of the
objects which the user defines and tolerance of the message passing algorithms to network
and node failures. While these features were not implemented during the course of Phase
1, ORGAL was designed with the expectation that these elements of the system would be
incorporated in future versions. Symbiotics is currently developing a state of the art model
consistent with the current design of ORGAL which will provide this functional robustness
as weU as aid significantly in the interactive and extensiable aspects of distributed system
development and debugging. These improvements to the language and its compiler are
expected to be finished in the fourth quarter of 1988.

In addition to purely technical issues, the predominance of non-Lisp languages in the current
software market as well as a percieved desire of many users to access a large number of other
commercial software packages, Symbiotics is currently porting ORGAL to a C based
environment. The C language is suitable for manipulating hardware and software at the
very lowest levels allowing advanced users versed in C to develop highly application specific
software on top of ORGAL. For similar reasons Symbiotics is actively adding other lisp
environments and hardware platforms to the ORGAL domain.

38

db

". .,.:."-*. ,.' '..p:.'-p.. , ... ,":.:,...,''.:"

r VLV V), ,_,. ,W..,W. . W,,, . '4 iL., -L W1Y.. 29 .L . '- hL- _ ,. . -,. U j

6.3 Future Directions with KNO

KNO will consist of two separate but integrated interface layers that will be presented to
the applications developer. The first interface, referred to as BasicKNO will present the
knowledge representation and knowledge processing functionality usually associated with
high-end commercial knowledge engineering tools [KCS86,CG87,ln85,Inf87J. The second
interface, the KNO Representation Language (KNORL), will consist of a language that is
semantically rich enough that it allows BasicKNO capabilities to be rapidly expanded by
the integration of established or experimental Al facilities by describing them rather than
reimplementing them.

6.3.1 BasicKNO

BasicKNO differentiates itself from other high-end commercial knowledge engineering
tools, such as ART [Inf87], KEE [In85] and KnowledgeCraft [CG87] as it is designed to
be embedded in applications as opposed to applications being embedded in the knowledge en-
gineering tool. Direct support of input-output functionality by these tools is prohibitively
narrow. 1/0 functionality consists almost entirely of sophisicated user interface utilities that
require the Al development tool to be used in an interactive mode. In fact, these user inter-
faces can account for more than half of the product's development and maintainance costs.
In order to perform basic I/O with files, databases and other processes, the application
developer must patch in their own application specific I/O functions.

BasicKNO will consist of standard and well-understand knowledge representation and
knowledge processing technologies. A Knowledge Object is a knowledge base which is
treated as an abstract data type. The KNO interacts with an user or system application only
through a small set of operations. This design strategy is based on the functional approach
proposed by Levesque and Brachman [Ba83]. This approach requires a knowledge base to
be completely specified functionally, ignoring how the knowledge base is implemented.

6.3.2 KNO Representation Language

The other design and development focus of KNO will be to construct a KNO Representation
Language (KNORL) for the representation of knowledge-based resources and the opera-
tions that can be performed on them. KNORL will be a frame-based language in de-
sign [St79,FiS5]. The KNORL represents the evolution of work currently underway at
Symbiotics on knowledge-based object description languages, DAIRLL [Sy87a], adapted to
the problem of describing knowledge-based resources. 'ihe eventual goal in development
of KNORL is a language suitable for capturing high-level descriptions in declarative form
that can be used by other tools, services and user applications. Like the DAIRLL, KNORL
will be almost completely self-descriptive, relying on a small set of kernel attribute constants
and prototype frames to implement the descriptions of all other elements in its universe of

3 9

"p
".% " ..'.' . ' .'J."." .'.- * .'o .--.-. *.'. W.-''" - "-.?;.S.'. " 5," ",y' ", S, ".k. O -, . *t "€ .. .t , 0"1¢

M

" * ". , ." " * , "

discourse. Self-description allows extension and modification of both KNORL - nd KNO's
initial base capabilities by the applications developer. The KNORL will serve as the ker-
nel language substrate on which a family of computer aided software engineering tools for
distributed artificial intelligence applications will be built.

The representation problem addressed by the KNORL has been investigated widely in
artificial intelligence research. The main motivating goal in research in Meta-Level rea-
soning, such as MRS [Ru85], was to solve the problem of combining disparate artificial
intelligence paradigms into a coherent architecture. Our design approach is closest to that
used in developing Krypton [Br83] and Joshua [Ro87. We have adopted the functional
interface design proposed in Krypton. Krypton proposes the integration of multiple artifi-
cial intelligence paradigms through the use of a logic representation and a theorem-prover.
Our approach differs from Krypton in that KNORL uses a frame-based representation
for describing multiple artificial intelligence paradigms. Also, efficient implementation of
knowledge processing is not sacrificed as it would be in the Krypton approach. Krypton's
theorem proving approach introduces another level of knowledge processing, as it must de-
duce how to perform any requested deduction. KNORL descriptions are transformed at
compile time, not at execution time, into knowledge base operation implementations.

The use of frames as a knowledge representation has a solid foundation in fundamental
artificial intelligence research. Our use of the KNORL has many similarities to the devel-
opment of frame-based representation language languages. The most famous representation
language language, RLL-1, developed by Greiner [Gr80], and later extended by Lenat [LeS2],
was a frame-based language. RLL-1 was designed to evolve through self-modification (or
the help of a programmer) into a language with the desired set of features optimal for the
domain on which it was being applied. The original premise was that the language be self-
descriptive. Both its representation and the description of its representation was available
allowing self-modification. RLL-1 was the core of Lenat's famous AM [Le82] and Eurisko
[Le83] learning systems. These systems were remarkable for their limited success in demon-
strating learning in the domains of number theory and VLSI design. Haase reimplemented
RLL-1, with his language ARLO and later ARLO' [Hs86a,Hs86b). ARLO contains several
novel ideas and software engineering improvements over its predecessor RLL-1. Some of
these include a value dependency mechanism that tracks and reconciles changes in prop-
erties and their description and a type system which is used to specify restrictions on the
dependencies and values of a property defined in ARLO. Haase used ARLO to successfully
implement the learning system Cyrano-O [Hs86c] which reproduced most of the results
obtained by AM in the domain of number theory.

Our development of the KNORL in a future effort will apply the power expressed in
a representation language language in a different direction than learning systems. Our
approach is to denote the semantics of the KNORL on a formal basis using attribute
grammar theory fRe82]. Symbiotics is currently developing a representation language for
describing distributed resources [Sy87a]. The experience gained from the development of
the DAIRL will provide a strong in-house base of experience and techniques that will be of
major benefit in the development of the KNORL.

40

In the design of the KNORL, precedence will be given to features that support a devel-
opment environment which allows the incorporation of a wide range of representation and
reasoning technologies in a general framework. The primary design goal is an artificial in-
telligence tool that is semantically rich enough that it allows a development environment
to be rapidly expanded by the integration of established or experimental Al facilities by
describing them rather than reimplementing them. Additionally, the KNORL will realize
a full integration of ORGAL and BasicKNO. The KNORL will allow the capture of de-
scriptions for use by distributed knowledge-based applications in accessing ORGAL's and
BasicKNO's functionality. This design will support our major technical objective which
is to allow the AI researcher or knowledge engineer to work at the level of structuring the
general problem solving activity of the domain application instead of solving programming
problems in low-level distributed communication.

6.4 Summary of Future Work

The primary focus of Phase I was to prototype a development environment, ACCESS,
for Communicating and Cooperating Expert Systems. More generally, this work explored
the question of what capabilities are needed in a development environment for embedding
distributed knowledge-based systems applications on PC or workstation class platforms.

The result of the Phase I effort was that Symbiotics prototyped a general distributed
processing environment for a heterogeneous collection of hardware and software platforms.
It is these findings which lay the foundation for our future work. In particular, the fun-
damental question that was resolved was, IWhat minimal set of generic functionality must
be provided by a development system to be able to represent an organization of problem
solving agents?. The Phase I effort has resulted in Symbiotics identifying major issues in
distributed processing as well as making a significant contribution to resolving these issues.

The next generation of artificial intelligence development environments must be able to in-
corporate a wide range of representation and reasoning technologies in a general framework.
These development environments will enable an intelligent system to reflectively reason
about the properties of its knowledge representation, methods of reasoning, and methods of
communication. A language based architecture that can capture the syntactic and semantic
description of an artificial intelligence system's supporting substrates will extend the cur-
rent generation of Al-systems' ability to understand and modify themselves. Secondly, and
of more immediate need, the same semantic power of expression that allows an application
to reason with its own representation presents a homogeneous development environment for
the human developer of the application. The homogeneity and semantic descriptive power
of a development environment which is language based allows newly developed or existing -
artificial technologies to be easily incorporated instead of being reimplemented.

The significant innovations of the proposed work relative to other existing research efforts
fall into two broad categories; The use of compiler technology to construct an efficient truly
hardware independent distributed environment. The creation of a referentially transparent

41%

tool, with respect to distributed processing issues, for cooperating knowledge sources.

The components of ACCESS supply the framework of an extensible language-based envi-
ronment for developing distributed artificial intelligence applications. The KNO Representa-
tion Language, KNORL, provides the language-based capibility for describing knowledge-
based objects. The Organizational Language, ORGAL, provides the basic core for the
implementation of a variety of distributed communication paradigms. The description of
the ORGAL and KNO interfaces is explicit and accessible. Capturing the description
of the DDSS interface by KNORL will serve as a complementary test of the descriptive
power of this language. The potential benefits of having the representation of the communi-
cation mechanisms of a distributed Al development environment accessible to its reasoning
machinery should not be ignored.

The realization of the ACCESS environment will result in the ability of its users to ro-
bustly develop and maintain large grain distributed processing systems. Although the tar-
geted market is embedded artificial intelligence applications, the ability of the application
developer to add their own extensions and access to distributed processing primitives makes
the system useful for general distributed processing development.

%

12

I N b *j ,U N N

Appendix A

ORGAL - A Distributed Processing Development Environment

A major impediment to developing cooperating knowledge sources is the absence of a high
level tool for distributing these organizations of problem solvers. Furthermore, as our model
for cooperating knowledge sources involved Sponsors, Receptionists and other types of meta
control objects we needed a substrate for their specification and implementation. In an effort
to meet this need, we developed a language ORGAL whose compiler handles the low level
Internet Protocol interface. This feature allows the user to specify and develop distributed
systems in Lisp without concern for networking or communications issues.

A.1 The Language - ORGAL

There are three first class objects (see next section) in the ORGAL Environment 1 which
the user must familiarize themselves with to develop a distributed application:

1. Environments - Processing Resource Descriptions

2. Agents - Application Gateways

3. Messages - Communication and Control Objects

Environments are defined using DefEnv. It adds hardware platforms (e.g. a PC/AT with
a IlummingBoard) to the global ORGAL database. It allows the compiler for the second
object type, Agents, to incorporate knowledge about its resident hardware Environment
into its generated data structures. DefAgent is used to define these Agents or application
gateways and it is this reliance on DefEnv which allows it to be hardware independent.
Once all of the hardware platforms have been described using DefEnv, the DefAgent com-
piler incorporates the necessary functionality for addressing hardware issues (e.g. network
protocols, screen I/O, file management, disk access, etc.) without user intervention. This
allows the system user to interactively develop distributed applications at a software level
without concern for the underlying hardware details. This feature alone has proved to be a
significant advance towards rapid development of distributed prototypes in-house.

Messages are the objects which Agents pass to one another in and across their respective
Environments. They contain the state and intent of the distributed computation.

'An ORGAL Environment is defined to include all Environments, Agents, and Messages accessable on
a network. It is the set of all of the Environment, Message and Agent objects known to the system. Agents
and Environments are viewed as persistent objects while Messages are of a finite lifetime.

43

4 ,.l- -'w. -.. ' - % - . P . t " t . " w " €. .. - " 4 '° - '-,. '""""' ,' . '' - '' . '' ' . ' "t * .'. '" '

A.1.1 First Class Objects

\\e define a first class object to be an object which can be written to or read from a
storage device and passed as an argument. Since Agents, Environments, and Messages 2

were defined as first class objects above, a mechanism must be provided to allow these
operations to be performed on them. There is a default behavior with regards to when
these operations are performed on each of the three types of objects. There are only
two legitimate reasons to override that behavior: for debugging and to preserve a desired
initialization state. Overriding the system defaults is done at definition time by use of the
keywords :scope and :lifetime. The matrix of possible value combinations for these keywords
is shown in Figure A.1. In all cases, :scope specifies the Environment(s) in which the value
of :lifetime will specify the duration of the objects existence.

A.1.2 :Lifetime

The attribute :lifetime defines the extent to which an object will be preserved in an ORGAL
Environment. The default value for :lifctime depends on the type of object being defined.
Currently, Agents have a default value of :image while Environments have a default value of
:persistent for the :lifetime attribute. Messages are defined to be objects with a temporary
lifetime. A record of Messages may be obtained by the user for debugging purposes by using
the macro Record-Message ". The :lifetime attribute may take the following values;

persistent
A :lifetime value of persistent causes a copy of the object being defined to be added to
both the permanent :class database(s) 4 specified as part of the *IIOST*'s 5 definition
as well as the image of that database(s) in memory.

image
A :lifetime value of image causes the system to store the object being defined in the
memory resident image(s) of the database(s) and not the permanent database(s).

permanent
A :lifetime value of permanent causes ORGAL to store the object definition only in
the permanent database(s) and not the image database(s).

2 The symbols Agent(s), Environment(s), and Message(s) will be capatialized in this manual when they
are being used to refer to these three classes of first class objects in the ORGAL system.

3See the section Messages
4 A "permanent" copy of the Environment and Agent databases are kept in files on the local node's disk.
5 *IIOST* is a special symbol who's value in an Environment is the name of that Environment in the

ORGAL system.

44

Figure A.1: ORGAL IKeyword Combinationl

0 U

0 0-

0 o.
0- 0

-c c

0 !

4) E

.sE) _

EE

r- .0

UU

00

VU.

-E

'-E

0J
7EH
0 4

cz 0

.S?-E

7-2>

A.1.3 :Scope

The attribute :scope defines which Environments an object definition will side-effect. The
default value of :scope for Agents is local while the default value for Environments is global.
A Message's scope is defined to be all of the Environments which the Message traverses in
its lifetime. The two possible values for the :scope attribute are:

local
A :scope value of local restricts the extent of the above :lifetime values to the Envi-
ronment on which the object is created, the current value of *lHOST*.

global
A :scope value of global extends the effect of the :lifetime value to all foriegn En-
vironments known to the current *HOST* in the case of Agents and Environment
definitions.

A.1.4 Generic Operations on First Class Objects

Messages, Agents and Environments are all first class objects. We differentiate one from
another because their behavior and intent are distinguishable. The following functions N
differentiate between them by use of the keyword argument :class. The following functions
are provided to operate on the object databases;

(List-Members &key (:scope global)
(:lifetime persistent) (:class Environment))

Returns a list of all members found in the specified :class database(s) and/or image(s).
:class can be any first class object; Environment, Agent, or Message. :scope and
:Iifetime may have any of the values defined in Figure A.1.

(Consistentp &key (:scope global)
(:lifetime persistent) (:class Environment))

Consistentp is a function with optional arguments which checks all of the specified
:class databases for consistency. It returns t if successful and otherwise returns a list
of :class objects which are inconsistent with the :class database known locally to the
current *IIOST*. :scope and :lifetime can take any of the values defined in Figure
A.1.

(Reset &key (:scope global) (:class Environment))

Causes all of the :class objccts known to *HOST* to reload their permanent copies of
the Environment database into the current image. :scopc can be local oi global, :cIu..
can be either environment or agent.

46

A

v'

, -,, * , - - --,., , -F ' _ . -

(Destroy &key (:scope global)

(:class Message) (:lifetime persistent))

Delete the database(s) and or image(s) of the object :class.

(Describe arg &key (:class Agent))

Returns the definition of object named arg in the object :class specified. Environments

may be specified by prefixing the Environment name followed by :: to the value of arg
(e.g. FOO::MAIL).

Each of the :class objects will now be described in detail followed by an example to demon-
strate their interactions.

A.1.5 DefEnv - Adding Hardware Platforms to the ORGAL Database

ORGAL maintains three databases internally. One contains the hardware platforms which
are accessible in the users' ORGAL Environment. An identical copy of this database

resides on all of these hardware platforms by default. The use of Env, an abbreviation for
Environment, is intended to denote that this object constitutes a comprehensive hardware
environment for supporting distributed software applications.

DefEnv is the top level macro for adding a hardware specification to the database:

(DefEnv Name :attributel valuel ... :attributeN valueN)

Name must be a symbol which uniquely identifies this hardware platform in the global OR-
GAL database. The attribute/value pairs which follow this name define the characteristics
of the hardware. The host Environment name is bound to the special symbol *IIOST*.
'The following list of attributes must be supplied:

:type symbol
The type value specifies the commercial name of the platform being defined (e.g. PC-

A'f). This object will inherit all of this objects attribute values not defined at this
time. Curren tlh sl pportod types can be foind in the special symbol *Il ..\IHI)-TYI'IS*. L

:net-address string
Net-address is the network address which this hardware platform is known by on the -.

:d-type network (e.g. "'00.44.50.1,").

The following attributes are optional;

47

:processor string
The processor value defines the processor of this hardware platform (e.g. 80286). Cur-
rc;,tly support: - processors can be found in the special variable *IIARD-PROCESSOR*.

:memory nanbcr
The memory value refers to the amount of extended memory available to the above
processor. Values should be specified in bytes (e.g. 6784000).

:pernanent- memory string
Memory (e.g. "c:") which will be used to store permanent copies of the ORGAL
databases.

:timeout number
Default timeout in seconds for an acknowledgement from this device. This value is
overridden for a particular Agent transaction if it possesses a :timcout attribute value
itself (see DefAgent below) The default value for timeouts is bound to the symbol
Default-Timeout which is unique to each Environment.

:operating-system symbol
The opcral ng-system value denotes the operating-system present on this platform
(e.g. DOS). Currently supported operating- systems can be found in the special
variable *IIARD-OS*.

:net-type symbol
Net-type defines the type of network which this hardware platform directly con- k

nected to (e.g. EtherLink-3Com). Possible values can be found in the special variable
,*I1ARD-NET*.

:agent-database-file pathname
The pathname of a file in which to store Agent definitions. This database is loaded
when an ORGAL Environment is initiated or a call to the generic function Reset is
made.

:environ-database-file path name

The pathname of a file in which to store Environment object definitions. This database
is loaded when an ORGAL Environment is initiated or a call to Reset is made.

:nessage-database-file pathname
The pathname of a file in which to store Message definitions. This file can only be
accessed by the function Tell and the generic operators List-Members and l)estroy.

:scope symbol
Scope defaults to global indicating that this object will be distributed to all Envi-
ronments known to the current value of *IIOST*. The other possible value is local
which causes this DefEnv to alter only the database local to this *IIOST*. This latter
option is only provided for debugging and should be used with extreme care as it can
easily destroy the integrity of the ORGAL system.

:lifetimie symbol
Lifetiie default, to persistent which indicates that this object will be stored in both
the permanent copy of the database(s) and the current image of the database(s). The
other two possible values are permanent and image. A value of permanent causes this

DefEnv to be only stored in the permanent copy of the Environment database(s). A
value of image causes this DefEnv to be stored only in the current memory resident

database image(s).

Additional keywords may be added at the user's discretion and will appear when the user
requests a platform description (see the generic operator Describe).

A.1.6 DefAgent - Adding Application Gateways to the ORGAL Database

ORGAL also maintains a database of accessible software application gateways resident on
the Environments specified by DefEnv. Each of these databases is unique to its locality by

default.

DefAgent is the top level macro for putting gateways to a users application software into
ali ORGAL database. The name Agent is intended to denote that this object will act as
an .z\ cnt in the ORGAL distributed Environment for a user supplied application:

(DefAgent Env::Name :attributel :valuel ... :attributeN :valueN)

Name must be a symbol which uniquely identifies the software being described on the
hardware platform specified by Env. Env must be the name of a hardware platform defined

using DefFnv. If Env:: is omitted, the ORGAL compiler will assume that this Agent is to
remain resident in the Environment in which it is being defined. The list of attribute/value
pairs which follow allow the user to specify the characteristics of the object being defined.
There are no required attributes. The following attributes are optional:

:type symbol

The type value must be either the symbol 'generic or an Agent name previously defined
by the user. The Agent being defined then inherits all attributes from this type not
explicitly defined in this DefAgent form through single inheritance.

:gateway-for symbol

The gateway-for value should be the symbol 'application or t he name of a user specified
Agent. If an Agent name is supplied here, it will receive all Messages sent to the Ap.et
being defined by the enclosing DefAgent.

:in-filter form
The in-filter value must be a single s-expression. The s-expression will l)e evaluated

49

'

. , €, ,i ¢£',~d¢, . ",'>', v- '-.s.'.. ; ,'.-.-'. ; ". _ . _ ,_ , . .,,_:"''--' V-. - !

in an environment which contains all of the attribute values contained in a miessage

(se section Messages). The evaluation will take place when this agent rceives all
incoming niessge.

:out-filter form :

Tile out-filter value must be a single s-expression. The s-expression will be evaluated
in an environment which contains all of the attribute values contained in a message -
(see section Messages). The evaluation will take place when this agent receives, all2

outgoing rnessge.

:result form

The result value must be a single s-expression. The s-expression will be evaluated in '
an environment which contains all of the attribute values contained in a message (sec
section Messages). The evaluation onl l takes place when this agent is an applicaton
agent (see Agent Types).

:tileout value

The amount of time this agent should continue to try to pass a message to As :gatcway-for value

:scope symbol
Scope defaults to local indicating that this object will only be known o the current
value of * wcOST*. The other possible value is global which causes this DefAgent to

alter all the databases known to this *ttOST*. See the section :scope.

:lifetime symbol
Lifetime defaults to image which indicates that this object will be stored in the current
image(s) of the database(s) of Agents. The other two possible values are permanen
and persistent. A value of permanent causes this Agent to be stored only in the

permanent copy of the Agent database(s). A value of persistent causes this Agent to be
stored in both the memory resident database image(s) and the permanent database(s).

See the section :lifetime.

In addition to the above, te user may supply their own attributes. These attribute/value

pairs will be displayed when the user requests a description of the Agent (see the generic

operator Describe).

A.1.7 Messages

In ORGAL Messages are first class objects. They are the only arguments which an Agent
receives. An ORGAL Message is itself an object which contains slot/value pairs. Agent
attributes (e.g. :iii-filter) values are evaluated in an environment, called a Message Closurc.
which contains the slot values of the Message bound to the symbols below. Furthermore.
after the evaluation of an attribute value, the Message slots are rebound to the values of
these symbols allowing the user to change the state of the Message object. The accessible
slots of a Message are:

50

V. % N

................ . . - - - - ..

d~ d

target symbol
The name of the Agent who wvill receive this Mlessage next.

dii ection kcyzvord
Either :in or :oat. WVhen the value is :in, this Message is moving towards the ap-
licationI Agent. When the direction is :out, this Message has already reached flip

app~lication Agent and is moving back towards the originating Agent (for a discussion
of application, intermediate andl originating Agents see the section Agcnt Types).

result-
By default this svnmbol is bound to what the :result of the application Agent returns.

travel-log list- of-symn in~s
While the value of this Message's direction is :in, travel-log is a list of all the Agents
who have received this Message. When the value of direction is :out, travel-log is a
list of all the Agents who will receive this Mlessage on the way back uip the chain to
the originating Agent.

args-
This slot contains the arguments which Tell passed to the originating Agent (see the
Section Agent Types).

priority number
Messages sent from one Environment to another are automatically put on a prior-
ity queue. The default priority given to a Message is bound to the atom *Default-
Priority*.

,,1

The user may reference these slots by using the symbols listed above. If the user side effects
a slot (e.g. (setq travel-log (cddr travel-log))) the new value ill become the Message slot's
value.

Messages may be written to a database for the purposes of debugging (see the generic
functions Destroy and List-Members). It is meaningless to load a Message database into an
image. The function Record-Message should be used to store a Message;

(Record-Message ..

Record-Message is a macro which the user may wrap around any attribute's value. It will
cause a Message to be time-stamped and written to the file specified by the Environment's
m essage-database-fic attribute on the Environment in which it is evaluated.

A.1.8 Tell - Creating and Passing Messages

There is onily one wag for the user to create a Message object and pass it to an Agent for

processing. This is done by application of the function Tell to the target, Agent and the

L

SectionN Ngn Nye)

*,
n

.

/

desired arguments for that Agent. "

(Tell Env: :Agent-Name arg)

Env must be an Environment previously defined by a DefEnv. If the Env:: is omitted, that is
just an Agent-Nane is supplied, Tell will assume that the Agent resides in the Environment
in which this Tell form is executed, the current value of *IIOST*. Agent-Name must be
a symbol which is the name of an Agent previously% created with DcfAgent. Arg can he
anything which can be coerced into a string.

The algorithmic behavior of Tell is as follows:

1. Find the Agent referred to and instantiate it if an instance of it does not already exist.

2. Instantiate a Message object with the target slot bound to the Agent name and the
args slot bound to a list of the arguments specified in the Tell form.

3. Pass the Message object to the :in-filter of the specified Agent.

4. Return the Message object instance.

Step 1 of this algorithm brings to light another design feature of ORGAL. The ORGAL r.
language is demand driven. It delays evaluation to avoid making superfluous instantiations.

The database of Agents actually contains the uninstantiated native code generated by the
55

ORGAL compiler. It is this feature which allows support of inheritance across Environ-
ments.

A.1.9 Agent Types - Runtime Message Handling Behavior

Agents are objects used to define gateways to user applications. These Agent objects are
stored in databases local to their specified Environments by default. The behavior of an
Agent object is not realized until it is run or fired.

There is only one way to cause an Agent to fire. It must receive a Message. There are two
mechanisms by which an Agent can receive a Message. Execution of a Tell form explicitly
naming an Agent causes a Message object to be generated and passed to that Agent. Agents
invoked in this manner are called Originating Agents, unless their :gateway-for value is
the symbol 'application (see below), because they are the first to see a Message. Alterna-
tively, if an Agent's name is the value of the :gatucay-for attribute of another Agent, it will
receive all Messages that this other Agent receives. Recall that the :gatcway-for attribute
of an Agent may be either the symbol 'application or the name of another Agent. If the
:gatriway-for value is the symbol 'application. then such an Agent is called an Application

52 A

W V

dl . s ~- * '.s' ~A

Agent. If the :gateway-for value is the name of another Agent, and the Agent with this
:gateway-for value is not an Originating Agent (i.e. was not invoked by Tell), then this
Agent is referred to as an Intermediate Agent. The behavior of these three types of
Agents is different with regards to Message passing. We will now examine each of these
behaviors.

A.1.10 Originating Agents

Any Agent which is not an Application Agent can be an Originating Agent. Such
Agents are distinguished both by being explicitly named inside of a Tell form and by not
having the symbol 'application as their :gateway-for attribute value. Their algorithm with
respect to Message passing is as follows:

1. Immediately return nil to the callers Environment. If the Message received has a
direction slot value of :in go to step 2. If the direction slot value is :out, go to 3.

2. Evaluate this Agents :in-filter value. Go to 4.

3. Evaluate this Agents :out-filter value. Go to 5.

4. Pass the Message to the value of this Agents :gateway-for attribute.

5. Return nil, we are done.

A.1.ll Intermediate Agents

Only Agents which receive Messages from other Agents and have a :gateway-for attribute
value which is the name of another Agent can be considered Intermediate Agents. Their
Message passing algorithm is as follows:

1. Immediately return nil to the callers Environment. If the message received has a
direction slot value of :in go to step 2. If the direction slot value is :out, go to 3.

2. Evaluate this Agents :in-filter value. Go to 4.

3. Evaluate this Agents :out-filter value. Go to 5.

4. Pass the message to the value of this Agents :gatc uay-for attribute.

5. Pop the value of the received message's travel-log slot and pass the message to that
Agent.

....

V ..- - ""

4*

A.1.12 Application Agents

An Application Agent is any Agent whose :gateway-for value is the symbol 'application.
These are the only Agents which evaluate their :result attribute by default. The algorithm
for their message passing behavior is given below:

1. Evaluate this Agents :in-filter value.

2. Evaluate this Agents :rcsult value.

3. Set the Message slot value to :out and bind what is returned by step 3 to the M.essagc's
result slot.

4. Evaluate this Agents :out-filter value.

5. If the value of the Messages travel-log slot is nil, then we are done. If the travel-log
value is a non-empty list, pop the travel-log list and pass the Message to that Agent.

Figure A.2 graphically depicts the behavior of these three types of Agents. The important
consequences of this facet of the ORGAL Environment are:

1. The locality of these Agents has no affect their Message passing behavior. These
three Agents could reside on one, two or three different processors and the mechanics
of their behavior will not change. This allows the user to develop and debug individual
Agents on a single processing Environment without making use of the network.

2. The nature of the user supplied code, provided it does not explicitly side-affect the
Message object, is also irrelevant to their Message passing behavior. The user supplied
code could call an expert system, a prolog system, a fast fourier transform, accounting
routines, etc.

3. Step 1 of all of the above algorithmic behaviors always begins by returning a value of
nil. This has two significant consequences:

(a) Control of the processing Environment is always immediately returned to the
caller when crossing Environments. This allows that Environment to continue
or initiate other tasks. This kind of non-deterministic asynchronous Message
passing is extremely powerful [Ag87].

(b) Results of any work done for value, as opposed to effect, by any Intermediate or
Application Agents must be preserved in the Message object itself. Eventually,
the :out-filter of the Originating Agent will receive the final Message object. It
is this :out-filter's responsibility to perform any desired tasks to be done for effect
in its Environment. Note that the ultimate return of Messages to the :out-filtcrs
of Agents gives the ORGAL system an asynchronous re-entrant flavor. This
aspect of ORGAL is unique among distributed processing systems.

51

JP ,

-- wa'V

F'liuro A.2: ()RGCA Lg' :%tl- A- teuit Relatjofllships

Message Closureo

User Supplied Code C

E

0i0

0 C,

U .l.

C)D

4,1

4V
0*

0) K, (
CLE

~ J .u-.r4

A.1.13 A Simple Example

Agents are a convenient way of defining a sequence of events intended to take place on several
processors or Environments. They provide a high level mechanism for running software
available on hardware accessible on your network. In order to accomplish this task, they
pass Messages which contain the state of the transactions they intend to perform. The flow
of Messages from Agent to Agent results in a sequence of events. While the user defines
the functional results of these events, the mechanics of Message passing are invariant to the
application or hardware involved. An example best demonstrates this feature of ORGAL.

Lets assume that there are three hardware platforms in the global ORGAL database: A.
B, and C. These platforms were added to the database by DefEnv. Furthermore, on each
of the above platforms, there resides a set of Agents. These Agents were defined in the
following manner:

(DefAgent A: :Delegated-Member-Test
:documentation "Split a list in half and check for

membership of an item in each half on
different processors."

:gateway-for B::Member?
:in-filter (let*
((item (car args))
(seq (cdr args))
(list-length (length seq))
(half-length (truncate list-length 2))
(first-half (subseq seq 0 half-length))
(second-half (subseq seq (+I half-length))))

;pass the first half to C::Member?
(tell A::Member-Test-2 item first-half)

;change the Message slot args to be the second half for B::Member?
(setq args (list item second-half)))

:out-filter (if result

(progn

(format t " . -s is a member." (car args))
;store the results of B::Member

(push results *member-test-results*))))

(DefAgent A: :Member-Test-2
:type A::Delegated-Member-Test
:gateway-for C::Member?
:in-filter nil)

(DefAgent B::Member?
:documentation ''An applications gateway for the member function.''
:gateway-for application

56

= N N =•= ~ N W WJ(bN = -~~

:result (let ((item (car args))
(list (cdr args)))

(member item list)))

(DefAgent A::Member?
:type B::Member?)

Evaluation of these forms causes these agents to be added to the agent databases associated
with their environ.

If the user now executes the form:

(tell A::Delegated-Member-Test 10 '(1 2 3 4 5 6 7 8 9 10))

A message with the following slot values will be created:

taget - 'A: :Delegated-Member-Test
direction - :in

result - nil

travel-log - nil

args - '(10 (1 2 3 4 5 6 7 8 9 10))
priority - *Default-Priority*

The :in-filter for Agent A::Delegated-Member-Test will receive this Message and its value
will be evaluated in an environment with the above symbols bound to the listed values (i.e.

a Message closure). As a result of this evaluation, the list '(1 2 3 4 5 6 7 8 9 10) will be
split into two lists, one of which is explicitly passed to A::Member-Test-2. This Agent was
defined with a :type attribute value of A::Delegated-Member-Test. Recall that an Agent
inherits all of its attributes from the Agent specified in its :type attribute with the exception
of those explicitly defined in its DefAgent form. The :in-filter attribute of A::Member-Test-
2 is explicitly set to nil here so that the list bound to the Message args slot will not again
be split into two. The :out-filter however, is inherited from A::Delegated-Member-Test as
it correctly stores the result in the same special variable.

A::Member-Test-2 is an originating Agent by definition. The :in- filter of A::Member-Test-2
is nil so nothing is done to or with the Message. The Message is simply passed on to it's
:gateway-for value, C::Meinber?. Recall that all Agents immediately return control to the
sending Environment. Once the Message is passed from Environment A to Environment C,
control is returned to A.

A::Delegated-Mernber-Test is now free to continue. It resets the args slot of the current

Message to the first half of the list. As the :in-filter has completed its evaluation, the

5 7

Message is now passed to its :gateway-for value B::Member?. In a manner identical to
C::Member?, control is now immediately returned to Environment A.

3
Two originating Agents, Delegated-Member-Test and Member-Test-2, in Environment A
have each passed a Message to different application- Agents on different Environments.
Eventually, these foreign application Agents will complete their :in-filter, :result, and :out-
filter sequence as prescribed by the algorithm defined above. laving done so, they will send
the resulting Message object back to the :out-filter of their originating Agents. Note that
there is no ordering of events imposed here. Which originating Agent receives the resulting
Message object first is non-deterministic. If the user application requires that both halves W^
of the list have been checked for membership before proceeding, it is up to the user to wait
(e.g. loop) until the list bound to *member-test-results* is of length two.

Eventually, A::Member-Test-2's :out-filter will receive a Message with the result slot bound 0
to t while A::Delegated-Member-Test's :out-filter will receive a Message with the result slot
bound to nil. The value of *memnber-test-result* will either be the list (t nil) or the list (nil
t) depending on who finishes first.

A.1.14 A Methodology for Development

Every programming environment suggests its own style for development. New ORGAL
users are strongly urged to read and utilize the following procedures while developing dis-
tributed applications.

1. The ORGAL model is based on the assumption that the Environment databases are
consistent and global. While the system allows you to break the model through the
use of the :scope and :lifetime keywords this is not the intended use of these features.
In general, the user is strongly discouraged from using a :scope value of :local with
DefEnv. The default values for :scope and :lifetime are usually (see below) reasonable
for normal operating conditions.

2. Always set the :lifetime option of all objects to a value of :image until you are satisfied
that the system is debugged and behaving as desired. At this point, it is safe to save
your definitions permanently by specifying a :lifetime value of :permanent. Remember
it is an error to try to redefine an existing object. You must first delete it by using
UnDefAgent or UnDefEnv.

3. ORGAL does not currently provide the user with an editor. A future release will
contain a structure editor for DefAgent and DefEnv. Until that feature becomes
available we suggest that you do your development in an Emacs style editor making
use of the Form Evaluation feature (usually Control-X Control-E). True beginners
may find it helpful to start by modifying existing definitions in the FREE-AG.LSP
file to get a feel for the systems behavior.

58

'J, .d.r

%

4. Unless you are debugging your system, it is meaningless to keep copies of Message %
objects in the Message database(s). Remember that you must explicitly delete these
databases with the generic operator Destroy with a :class value of message.

5. ORGAL is not currently fully fault tolerant. Should a node become non-functional
for any reason during the course of a computation it is up to the application code to
handle the exception.

6. Error handling is not explicitly provided as part of the ORGAL Environment. This
is because of the lack of an error system in the current Common Lisp standard. See
the examples in the file FREE-AG.LSP and the documentation on errors of the Lisp
you are running for suggestions on addressing this issue.

-.

.,.,

I

,*.

,S%

Appendix B

Basic KNO Reference Manual

B.1 Basic KNO Design Model

KNO, KNowledge Objects is the substrate of ACCESS for the representation of and
processing of knowledge. The definition of a Knowledge Object, referred also to as a KNO.

is conceptionally very similar to an Actor[Ag87] or a Deliberate Agent[GeS]. All KNOs
define their external functional behavior with their environment through a small set of
operations, KNO Operations or KNOOP. The major component of the KNOOP defines
a full and uniform functional access to a KNO's internal state. The internal state of a
KNO represents the KNO's conceptualization of its universe and as such is a knowledge
base. In its most simplest conception, a KNO can be thought of as a database of knowledge
structures. The implementation of the knowledge represented as state in a KNO is hidden
by the functional definition of the KNOOP. The operation, TELL, for example, is used for
performing all forms of assertion on a KNO's knowledge base.

In order for the KNO to support a broad spectrum of knowledge representation and knowl-
edge processing the iiternal architecture must be accessible. The functional architecture of
a KNO, or the entire class of KNOs, can be extended by defining a new KNO Protocol, r
KNOPROT. Alternately, the functional defintion of a KNO's behavior can be retain,,d
while its internal architecture can be altered by defining a new KNO Implementation,
KNOIMP. Both a KNOPROT and a KNOIMP define the behavior of a KNOOP. The
determination of which KNOPROT or KNOIIP is used for a given KNOOP is specified by
the type of the knowledge the KNO is being requested to process.

The external representation of all declarative knowledge presented to a KNO is in prcdicate

sentence form. A KNO predicate sentence is formed from a n-ary predicate constant, p and
n terms r...rn in the following form:

(P r1... n).

The type of the knowledge is specified by the predicate of the predicate sentence. A specific
h'NO Protocol and KNO Implementation are specified for a specific predicate or class of
predicates. This method for determining the type of the knowledge being processed is
itself a protocol and in the current implementation it is the default KNOPROT for all
K.VOOP. All predicates, unless otherwise specified, assume a default KNOPROT and a
default KNOIMP where such is required. For example, the default KNOPROT for the
KNOOP TELL, operating on the Knowledge Object Agent for the assertion (TELL 'A GENT
'(ON BLOCK-A TABLE)) is:

1. Determine if the KNO 'AGENT is known. If 'AGENT is known, send the message (TELL

60 ff

% %.

+ ' ,+''- ,' aJl~t'll ' I, ', 1,1, l~l ; il~t
- '

"... ."+: - " '," . . . : ' '- ft.'

J, .i, , . , -, i.- -.- - = : : :a: : .. . ,,' ,,= .,.- 1 "-_ . - .- y -

p.

4.

'AGENT '(ON BLOCK-A TABLE)) to 'AGENT. .

2. AGENT checks and verifies that ON is a known predicate.

3. The KNO AGENT finds and dispatchs on the declared KNOIVP for the TELL operation
for the predicate ON. In this case the KNOIAIP for ON is the default KNOIMP for TELL
For the current implementation of Prototype K\NO the default KNOIMP for TELL is
forward chaining inference.

4. Store ground predicate sentence, ' (ON BLOCK-A TABLE) in knowledge base of the
tKNO named AGENT, if and only if the sentence is not already present.

5. If the sentence is new, send it into the discrimination net for forward resolution.

B.1.1 KNOOP: Basic KNO Operations

The design and architecture of Knowledge Objects is based on an object-oriented method-

ology. The KNOOP defines a generic and highly abstract set of knowledge processing
operations. The KNOOP TELL is the operation for asserting any knowledge to a KNO.
The KNOOP RETRACT is the operation for removing knowledge from a KNO. A KNO
specifies what type of knowledge processing will be executed by the type of the knowledge.
The type of the kniowledge is determined by the predicate constant of a predicate sentence.

TELL
TELL stores a predicate sentence in the knowledge base of a KNO using the TELL operation
protocol implemented for the predicate. The arguments to the TELL operation are a KNO
instance and a predicate sentence. In general TELL performs knowledge processing on
the referenced KNO using forward inferencing. TELL may accept optional arguments as
required by the definition of the TELL operation for the predicate. The predicate sentence
argument of a TELL operation may not contain any free variables.

ASK
ASK retrieves all predicate sentences in the knowledge base of a KNO which can be matched
or inferred using the ASK operation protocol implemented for the predicate. The arguments

to the ASK operation are a KNO instance and a predicate sentence. ASK can be considered
a query to the referenced KNO's database. In general ASK performs knowledge processing -r
using backward inferencing. The predicate sentence argument of an ASK operation may .
contain free variables. ASK may accept optional arguments as required by the definition of
the ASK operation for the predicate.

DELETE
DELETE removes a predicate sentence in the knowlege base of a KNO using the DELETE
operation protocol implemented for the predicate. The arguments to the DELETE opera-
tion are a KNO instance and a predicate sentence. In general DELETE performs knowledge
processing Oh the referenced KNO using Basic KNO's truth maintenance system. DFLETE

6 1.

may accept optional arguments as required by the definition of the TELL operation for the
predicate.

RETRACT
RETRACT removes a predicate sentence in the knowlege base of a KNO using the RE-
TRACT operation protocol implemented for the predicate. The arguments to the RE-
TRACT operation are a KNO instance and a predicate sentence. In general RETRACT
performs knowledge processing on the referenced KNO using Basic KNO's truth mainte-
nance system. RETRACT may accept optional arguments as required by the definition of
the RETRACT operation for the predicate. Unlike DELETE, the default functional con-
tract of RETRACT is to not only remove the referenced predicate sentence but also remove
all inferences that depend on the assertion of the predicate sentence.

EXPLAIN
EXPLAIN retrieves the justification of a predicate sentence in the knowlege base of a KNO
using the EXPLAIN operation protocol implemented for the predicate. The arguments to
the EXPLAIN operation are a KNO instance and a predicate sentence. In general EX-
PLAIN performs knowledge processing on the referenced KNO using Basic KNO's truth
maintenance system. EXPLAIN may accept optional arguments as required by the defini-
tion of the 'FELL operation for this predicate.

B.2 Current Level of KNO Development: Prototype KNO

B.2.1 Known Bugs

The first compilation of a rule results in a memory error in GIl/HB. This is due to a
structure used by the rule compiler that is referenced before it has been properly defined.
In other Lisp environments this error does not occur. To recover from this error, exit from
the debugger and attempt to recompile the rule again.

DELETE fails on conjunctive rules. The protocol for reclaiming all data structures is not
yet fully operative for rules with more than one predicate sentence clause in the antecedent
body. The only recovery from this is not to use DELETE. Using DELETE to remove
ground predicate sentences from the knowledge base that are referenced in rules with con-
junctive clauses will corrupt the garbage collector and thus the entire KNO development
environment.

B.2.2 Creation Functions
I,

Create-KNO KNOId"
Create-KNO creates an instance of a INO class.

62

"5,,

S "'% " - " . Sm " . " ° % • "%' . . , " " " " % " . " " % % ", - - % *

Define-Predicate KNOhl Predicate-name arity
Define-Predicate defines a new predicate for a class of KNOs or a particular KNO instance.
The predicate must be defined for a KNO class or instance before it can be referenced in
a KNO operation such as TELL or ASK. The arguments for Define-Predicate are a KNO
instance or KNO class, a predicate symbol and optional initialization keywords.

Define-Rule
Define-Rule defines a new Rule for a class of IKNOs or a particular KNO instance. The
arguments for Define-Rule are a KNO instance or KNO class, a Rule symbol, the rule
body and optional initialization keywords. The complete specification for defining a rule is
described in detail in the section Rule Syntax.

B.2.3 Destruction Functions

Clear-KB KNOId
All predicate sentences are deleted from the knowledge base of KNO.

Clear-Rule-Base KNOId
All rules are deleted from the rule base of KNO.

B.2.4 Description Functions

Describe-Statistics KNO
Display the knowledge processing statistics of KNO. Currently only rule based forward
inferencing statistics are logged. The display produced for
(DESCRIBE-STATISTICS 'AGENT)

are:

Clause Element Matching
Successful Element-matches 1000
Failed Element-matches 1000
Total Element-matches 2000

Entire Pattern of Clause Matched
Successful Matches 999
Failed Matches :1
Total Matches : 1000

Clause - Clause Unification
Successful Merges :0
Failed Merges :0
Total Merges :0

N-N3

hR

Rules Triggered 999 e.
Rules Fired :999

The statistic Clause Element Matching counts the number of constant terms in all predicate
sentence patterns of a KNOId. All the constant terms of a predicate sentence pattern must
be matched before the entire pattern of a clause is considered successfully matched. This
event is measured by the statistic Entire Pattern of Claus(Matched. A rule condition
body is composed of one or more clauses (predicate sentences). Multiple clauses in a rule's
condition body specify a conjunctive sentence. The statistic Clause - Clausc Unification
counts the number of times a pair of conjunctive clauses are satisfied. \Whenm a set of
predicate sentences are found that satisify all the clauses of a rule then a rule is satisified.
This event is counted by the statistic Rules Triggered. When a satisfied rule is scheduled
and its antecedent is evaluated the rule is said to have fired. This event is counted by the
statistic Rules Fired.

Describe-Rule-Base KNOId &,'key (brief 't)
Displays all the rules currently defined in the rule base of KNOId. An argument of nil to
the keyword brief will result in a verbose description of the rules.

Describe-Predicate-Base KNOd &'key (brief 't)
Displays all the predicates currently defined for KNOID. An argument of nil to the keyword
brief will result in a verbose description of defined predicates.

Describe-KB KNOM
Displays all the ground predicate sentences in the knowledge base of h'O.,d.

B.2.5 KNOOP: Knowledge Base Operations, Prototype Version

TELL KNOId
Fully implemented as forward inferencing with a rule-based representation.

DELETE KNOMd
Fully implemented as a dependency net of all inferences.

DESCRIBE KNOId
Implemented as the various Describe-x functions. Describe-KB and Dcscrib -Statistics are
ex?.-,ple, of these functions. These functions will be removed from the interface at a later
date and replaced by the generic operation DESCRiBE.

RETRACT KNOId
Not yet implemented.

ASK KNOId

3 .'C

Not yet implemented.

EXPLAIN KNOId
Not yet implemented.

B.2.6 Miscellaneous Functions

Reset-Statistics KNOld
Sets all knowledge processing statistics counters of K.VOld to zero.

Gc-Statistics
Display the statistics of the KNO environment garbage collector. There is one garbage
collector and central data structure reclaiination facility per computation node. GC Statis-
tics records allocation and deallocation events for all data structure types used by a KNO
environment by all currently active ICNOs. The number of IKNO data structures tlr t '%n be
allocated from each type-s reclaimation heap rather than being allocated from the available
memory is also recorded. This statistic is called lcngth.

B.3 Rule Syntax

The BNF form for specifing syntax has been adopted. In our notation:

term is to denote that term is optional.

* {term}'is to denote that term is optionial and niaV appear more that once.

* {tern} + is to denote that term is non-optional but may appear more than once.

a <term> is to denote the body of one complete syntax term.

The syntax of a rule definition is:
<rule>
(Define-Rule
<name>
<Documentation string>
<Antecendent body>

{Filter }

{Consequence body}+)

<name> atom

6!")

7A

. , .

<Documentation string> "string''

<antecedent body>
{predicate sentence pattern}+
{Filter }

<predicate sentence pattern>
(<predicate/n> <p - tcrn 0 > ... <p - 71m,>)

<p-term>
({<p-term>) I
<variable>
<constant> *

<constant>

<atom>

<variable>

<?atom>

<Filter>
(Filter {Lisp lambda body)+)

<consequence body>
<consequence body>
<application>

<application>
(Lisp Function Application)lI

(TELL <KNO Name> <predicate sentence pattern>) I
(DELETE <KNO Name> <ground predicate sentence pattern>)

The rule's antecedent body consists of the conjunctive set of all predicate sentence pattern
terms and the set of defined filters. When each pattern is individually satisified and all
variable bindings in all bindings are unifiable and consistent and all filters are satisified for
this set of variable bindings then the rule is triggered and its consequence body can be
evaluate(] when scheduled.

A filcr-tUst is any disembodied lambda function which returns non-nil to indicate a passing
conlditional and nil for a failing conditional.

An1 a pplication can be anv valid Common Lisp function apl)lication which will be evaluated
in the binding environment of the rule when the rule's consequence body is executed.

W;%
p (;r;

PP ~ ~ q -*.. -. P.. ***.?~** ~ ~ -- ~ -

Prototype KNO is designed to be an extension of Common Lisp. Lisp has two modes
of evaluation. Evaluation at compile time and evaluation at load time. Both of tliese .
evaluation modes are necessary in order to specify when the binding of a variable should
be dereferenced. With the advent of a rule's binding environment, it is necessary to delimit
a third evaluation mode, evaluation at rule consequence execution time. Evaluation of a
form in the rule's environment and the dereferncing of all variable bindings in that form is
signaled by: (reval form).

B.4 KNO Performance

Preliminary performance results are available for Prototype KNO. In the earliest stages of
the implementation of KNO emphasis was placed on performance.

Bench-) tests the amount of time to perform 1000 basic knowledge base updates and the
associated overhead of pattern matching one predicate sentence pattern with one variable.
The benchmark is initiated with the operation
(TELL AGENT (status-of chain-is 1))

with the following rule in the rule base of the]KNO AGENT.

(Define-Rule
'AGENT
'(Chain-Forever-O

(status-of chain-is ?n)
(filter (< ?n 1000))

(TELL AGENT (status-of chain-is (reval (1+ ?n))))))

Bench-2 expands on the Bench-i benchmark by measuring the performance of Prototype
KNO when a predicate sentence is removed from the knowledge base. DELETE is the
complementary operation to TELL and also results in a change of AGENT's knowledge
base. The benchmark is initiated with the operation
(TELL AGENT (type-of chain-is 1))
with the following rule in the rule base of the KNO .4 GENT.

(Define-Rule

'AGENT

'(Chain-Forever-I

(type-of chain-is ?n)

(filter (< ?n 1000))

(DELETE AGENT (type-of chain-is ?n))
(TELL AGENT (type-of chain-is (reval (1+ ?n))))

'U'

S"7

%I

Bench-3 tests the basic overhead of the satisfing conjirctive sentences and the unification
of a shared variable. This diagnostic like Bench-1 and Bench-2 is performed over 1000 rule
executions. The benchmark is initiated with the operation
(TELL AGENT (unif-bind-type-of 'Hairy-Moths 1))

(TELL AGENT (unif-bind 'Hairy-Moths))
with the following rule i,, the rule base of the KNO A.GENT.

(Define-Rule

'AGENT

'(Chain-Forever-2

(unif-bind-type-of ?m ?n) %

(unif-bind ?m)

(filter (< ?n 1000))

(TELL AGENT (unif-bind-type-of ?m (reval (1+ ?n))))))

The performance evaluation of Prototype KAO was performed in the following hardware/software
configurations:

Symbolics 3620
3 Megawords of memory
Using Symbolics Common Lisp Genera V7.1

Timer resolution: 1.0 microseconds

Gold tlill Common Lisp V3.0

Al Architects }tummingboard
1.5 Megawords of memory

Processor: Intel S0386 at 16 MHz
Timer resolution: 10,000 microseconds

The results of the benchmarks are shown in Table B.I. The times shown in all these tables
are in seconds. The number given in each column is the average execution time in a set of

three runs.

Allocating memory is an expensive operation in the Symbolics and Gold lill environments.

This is highlighted when comparing the results of Bench-1 and Bench-2. In Bench-2, a

predicate sentence is deleted from the knowledge base on each cycle. Because KNO has its
own internal facility for the reclaiminig of its dynainc data structures, the amount of tine
to DELETE a predicate sentence is more than made up by the fact that the TELL can use

the reclaimed data structures instead of allocating them from the general Lisp environment

memory.
,%

,i.

' (;s

a-

Table B.1: Performance of Prototype KNO

Bench Symbolics Goldllill Goldllill
Diagnostic 3620 llummingboard Symbolics

(seconds) (seconds) Ratio

Bench-1 3.8 19 5
Bench-2 2.5 21 8
Bench-3 7 38 5

B.5 Installing and Loading KNO

1. The KNO package uses the same DEFSYS.LSP utility as the CLBENCII package.
The steps outlined in Loading the CLBENCJI are identical to those that need be done
here.

2. Modify the KNOSYS.LSP file in the same manner as outlined for the KNOSYS.LSP
file for the CLBENCII package.

3. Compile-load or evaluate KNOSYS.LSP

4. Invoke the function Compilc-KNO to compile the package.

5. Invoke the function Load-KNO to load the package.

69

g-

.5-

B.6 KNO Example

In this section a small session with the KNO development environment is reviewed. This

exercise serves as a quick "cookbook" introduction to the standard rule based representation
and processing capabilities of the Prototype AN'O Vcrsion.

The commands typed by the user are delimited by Kno> at the start of a line. Any line
that does not begin with this delimiter is the output resulting from the execution of the
command.

Kno> (setf *print-circle* 't) p.

T

By setting this Common Lisp environment control variable to non-nil most infinite struc-
tures will be printed properly. KNO has many structures which mutally refer to each
other. Setting this variable usually prevents an infinite dump to your terminal screen. This
behavior is Common Lisp implementation dependent.

Kno> (in-package 'kno)
#<Package KNO 37614005>

Currently, the interface of KNO is not exported. All references to KNO operations external
to the package 'KNO must be explicitly referenced by preceding the operation with the
package name 'KNO.

Kno> (Define-Rule
'AGENT2
'(Chain-Forever-O

(status-of chain-is ?n)

(filter (< ?n 1000))

(TELL AGENT2 (status-of chain-is (reval (1+ ?n))))))

Warning:
Undefined Knowledge object: AGENT2

KNO must be defined before rule definition.
For rule: (CHAIN-FOREVER-O (STATUS-OF CHAIN-IS ?N) (FILTER (< ?N 1000)) --.

(TELL AGENT2 (STATUS-OF CHAIN-IS (REVAL (1+ ?N)))))
NIL

This shows an example of the error checking that is available in the IKNO package. Ini this
case an error resulted because a rule was defined for a IKNO object instance AGENVT2 which
was not defined.

70

d%

%

6* ",

7 7

Kno> (create-kno 'agent2)

#S(KNO :NAME AGENT2
:PREDICATE-WM NIL
:RULE-WM NIL
:KNO-WM NIL ...)

Kno> (describe-kb 'agent2)
AGENT has an EMPTY Knowledge Base

NIL

Kno> (describe-rule-base 'agent2)

AGENT has an EMPTY Rule Knowledge Base

NIL

When a KNO is created it comes into being totally ignorant about the universe in which it

exists.

Kno> (Define-Predicate 'AGENT2 'status-of 2)

#S(PREDICATE :PRINT-VALUE STATUS-OF
:KNO AGENT2
:CLASS PREDICATE

:ARITY 3

:M-LINK-DISPATCH-VECTOR NIL
:M-LINK-TERMINAL NIL

:GPC-TABLE NIL
:TELL GENERIC-TELL
:ASK GENERIC-ASK

:DELETE GENERIC-DELETE

:RETRACT GENERIC-RETRACT

:EXPLAIN GENERIC-EXPLAIN

:DESCRIBE GENERIC-DESCRIBE)

The above gives us a peek at how the dispatching mechanism for the KNOOP is specified by
the type of the knowledge being processed. Each predicate defined for a KNO is a structure

which contains a set of pointers, one pointer for each ANO Operation. In this case, for the

predicate Status-of, the KNOOPs TELL and DELETE will invoke the default KNOIMPs
GENERIC- TELL and GENERIC-DELETE respectively, r

Kno> (gc-statistics)
ENVIRONMENT-HEAP Length: 0

Allocate count: 0

Deallocate count: 0

BINDING-HEAP Length: 0

71

% % 4,V N 1

Allocate count: 0

Deallocate count: 0

GPC-HEAP Length: 0

Allocate count: 0

Deallocate count: 0
F-LINK-HEAP Length: 0 J

Allocate count: 0

Deallocate count: 0
RULE-HEAP Length: 0

Allocate count: 0,

Deallocate count: 0
JOIN-HEAP Length: 0

Allocate count: 0

Deallocate count: 0
M-LINK-HEAP Length: 0

Allocate count: 0

Deallocate count: 0
EQUAL-HASH-TABLE-HEAP Length: 0

Allocate count: 0

Deallocate count: 0
EQ-HASH-TABLE-HEAP Length: 0

Allocate count: 0
Deallocate count: 0

SVECTOR-HEAP Length: 0

Allocate count: 0

Deallocate count: 0

VECTOR-HEAP Length: 0

Allocate count: 0
Deallocate count: 0

NIL

Kno> (Define-Rule

'AGENT2
'(Chain-Forever-O

(status-of chain-is ?n)
(filter (< ?n 1000))

(TELL AGENT2 (status-of chain-is (reval (1+ ?n))))))

#S(RULE :NAME CHAIN-FOREVER-a
:ID #:RULES313

:KNO
#S(KNO :NAME AGENT2

:PREDICATE-WM ...)

72

Kno> (gc-statistics)
F-LINK-HEAP Length: 0

Allocate count: 1

Deallocate count: 0
RULE-HEAP Length: 0

Allocate count: 1
Deallocate count: 0

JOIN-HEAP Length: 0

Allocate count: 0
Deallocate count: 0

M-LINK-HEAP Length: 0

Allocate count: 2
Deallocate count: 0

EQUAL-HASH-TABLE-HEAP Length: 0

Allocate count: 0
Deallocate count: 0

EQ-HASH-TABLE-HEAP Length: S

Allocate count: 13
Deallocate count: 10

VECTOR-HEAP Length: 8

Allocate count: 29
Deallocate count: 26

NIL

By displaying the KNO garbage collection statistics before and after a rule has been created,
itis seen that the garbage collector tracks the data structures that implement a rule.

Kno> (describe-predicate-base 'agent2 :brief nil)

This structure is a <PREDICATE>
Name: STATUS-OF .1

Owning KNO: AGENT2
GPC Count: NIL

NIL

Kno> (describe-rule-base 'agent2 :brief nil) 'W
This structure is a <RULE>
Name: CHAIN-FOREVER-O

id: RULES313
Owning KNO: AGENT2

Reference Count: 0
Forward Feeding Node: M-LINK5311
Original form:
(CHAIN-FOREVER-O (STATUS-OF CHAIN-IS ?N) (FILTER (< ?N 1000)) -- >

(TELL AGENT2 (STATUS-OF CHAIN-IS (REVAL (1+ ?N)))))

7:,.

RHS Lambda form:

(DEFUN CHAIN-FOREVER-0-RHS-5312 (BINDING)

NIL
(LET* ((KNO-RULE-BINDING (RULE-BINDING (DEFINED-KNO? 'AGENT2)))

(KNO-LEFT-ENVIRONMENT-0

(ENVIRONMENT-SLOTS (BINDING-ENVIRONMENT BINDING)))
(?N (SVREF KNO-LEFT-ENVIRONMENT-0 0)))

(GENERIC-TELL 'AGENT2

'AGENT2

'STATUS-OF

(LIST 'CHAIN-IS (1+ ?N))
KNO-RULE-BINDING
):INFERRED)))

NIL

The above displays some of capabilities of the DESCRIBE facilities.

Kno> (TELL 'AGENT2 '(STATUS-OF CHAIN-IS 1))

999

Currently, the protocol of TELL is to return the number of forward inferences that occured

due to the assertion of new knowledge.

Kno> (DESCRIBE-STATISTICS 'AGENT2)

TELL processing statistics for KnowledgeObject : AGENT2

Clause Element Matching

Successful Element-matches 1 1000

Failed Element-matches : 1000

Total Element-matches . 2000

Entire Pattern of Clause Matched

Successful Matches .999

Failed Matches .1

Total Matches 1 1000

Clause - Clause Unification

Successful Merges .0
Failed Merges :0

Total Merges :0

Rules Triggered . 999

Rules Fired . 999

14I

5'

NIL

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 1000

Deallocate count: 1000

BINDING-HEAP Length: 2

Allocate count: 999

Deallocate count: 999

GPC-HEAP Length: 0

Allocate count: 1000

Deallocate count: 0

SVECTOR-HEAP Length: 2

Allocate count: 1000

Deallocate count: 1000

NIL

Kno> (DESCRIBE-KB 'AGENT2)

PREDICATE STATUS-OF 1000

(STATUS-OF CHAIN-IS 639)

(STATUS-OF CHAIN-IS 367)

Using various Describe functions the effects of the knowledge processing that occured in
the KNO AGENT2 can be examined. For example, *GPC-ItEAP* statistic shows the

number of ground predicate clause sentences that were allocated. An Environment is a data

structure that contains the variable bindings of a ground predicate sentence pattern, while
a Binding is the data structure that records the entire binding environment of a groul/!d(

predicate sentence pattern.

Kno> (CLEAR-KB 'AGENT2)
NIL

., Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 1000

Deallocate count: 1000

BINDING-HEAP Length: 2

. Allocate count: 999

I . 75

Deallocate count: 999
GPC-HEAP Length: 1000

Allocate count: 1000
Deallocate count: 1000

By clearing the knowledge base of AGENT2 and then examining the KNO environment
garbage collection statistics we see that the data structures associated with the deleted
prcdicatc scntcnces have been reclaimed.

The following session shows the defining and processing of a rule that uses both the TELL
and DELETE operations.

Kno> (create-kno 'AGENT)
#S(KNO :NAME AGENT

:PREDICATE-WM NIL
:RULE-WM NIL
:KNO-WM NIL ...)

Kno> (Define-Predicate 'AGENT 'type-of 2)
#S(PREDICATE :PRINT-VALUE TYPE-OF

:KNO AGENT
:CLASS PREDICATE

:ARITY 3 ...)

Kno> (Define-Rule
'AGENT
'(Chain-Forever-i

(type-of chain-is ?n)
(filter (< ?n 1000))

(DELETE AGENT (type-of chain-is ?n))
(TELL AGENT (type-of chain-is (reval (1+ ?n))))

#S(RULE :NAME CHAIN-FOREVER-i

:ID #:RULES330
:KNO

#S(KNO :NAME AGENT ...)

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 1000

76

Deallocate count: 1000
BINDING-HEAP Length: 2

Allocate count: 999

Deallocate count: 999
GPC-HEAP Length: 1000

Allocate count: 1000
Deallocate count: 1000

SVECTOR-HEAP Length: 2

Allocate count: 1000
Deallocate count: 1000

NIL

Kno> (TELL 'AGENT2 '(TYPE-OF CHAIN-IS))
Unknown predicate <<TYPE-OF>> for KNO <AGENT2>
TELL operation ignored
For pclf: (TYPE-OF CHAIN-IS 1)
NIL

Kno> (TELL 'AGENT '(TYPE-OF CHAIN-IS 1))

999

Kno> (DESCRIBE-STATISTICS 'AGENT)
TELL processing statistics for KnowledgeObject : AGENT

Clause Element Matching
Successful Element-matches 1 1000
Failed Element-matches 1 1000
Total Element-matches . 2000

Entire Pattern of Clause Matched
Successful Matches . 999
Failed Matches .1
Total Matches . 1000

Clause - Clause Unification
Successful Merges .0
Failed Merges .0
Total Merges .0

Rules Triggered . 999

Rules Fired .999
NIL

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 2000

Deallocate count: 2000
BINDING-HEAP Length: 2

Allocate count: 1998

Deallocate count: 1998
GPC-HEAP Length: 999

Allocate count: 2000
Deallocate count: 1999

SVECTOR-HEAP Length: 2

Allocate count: 2000
Deallocate count: 2000

NIL

Kno> (DESCRIBE-RULE-BASE 'AGENT)
RULE CHAIN-FOREVER-i 999

NIL

Kno> (DESCRIBE-KB 'AGENT)
PREDICATE TYPE-OF 1

(TYPE-OF CHAIN-IS 1000)
NIL

Kno> (DESCRIBE-PREDICATE-BASE 'AGENT :BRIEF NIL)

This structure is a <PREDICATE>

Name: STATUS-OF
Owning KNO: AGENT

GPC Count: NIL

This structure is a <PREDICATE>

Name: TYPE-OF
Owning KNO: AGENT .

GPC Count: I
NIL P.

The following shows one KNO, A GENT, can communicate with another KNO, MA AA GER.

It also demonstrates that the rule compiler treates the consequence body as an extended
version of Common Lisp. Any CommonLisp function application can be embedded in the
consequence body of a rule.

Kno> (Define-Rule
'AGENT

'(Chain-Forever-i
(type-of chain-is ?n)

(filter (< ?n 1000)) p1
['

(when (equal ?n 999)

(TELL MANAGER (finished AGENT processing)))

(DELETE AGENT (type-of chain-is ?n))

(TELL AGENT (type-of chain-is (reval (1+ 9n))))

The following session shows the definition and knowvledge processing of a rule wvith conjlnc-- e
tive predicate sentence patterns.

Kno> (Define-Predicate 'AGENT 'unif-binid 1)

#S(PREDICATE :PRINT-VALUE UNIF-BIND

:KNO AGENT

* :CLASS PREDICATE

:ARITY 2 ...)

Kno> (Define-Predicate 'AGENT 'unif-bind-type-of 2)

#5 (PREDICATE :PRINT-VALUE UNIF-BIND-TYPE-OF
:KNO AGENT
:CLASS PREDICATE

:ARITY 3 ...)

Kno> (DESCRIBE-KB 'AGENT)

*PREDICATE STATUS-OF NIL

PREDICATE TYPE-OF 1

(TYPE-OF CHAIN-IS 1000)

PREDICATE UNIF-BIND NIL

PREDICATE UNIF-BIND-TYPE-OF NIL

NIL

Kno) (Define-Rulede
'AGENT

'(Chain-Forever-2

(unif-bind-type-of ?m ?n)
(unif-bind ?m)

(filter (< ?n 1000))

(TELL AGENT (unif-bind-type-of ?mn (reval (1+ ?n))))))

#S(RULE :NAME CHAIN-FOREVER-2

:ID #:RULE5365

* KNO
#S(KNO :NAME AGENT ...

Kno> (DESCRIBE-RULE-BASE 'AGENT)

RULE CHAIN-FOREVER-0 0

N_

RULE CHAIN-FOREVER-I 9

RULE CHAIN-FOREVER-2 0
NIL

Kno> (DESCRIBE-RULE-BASE 'AGENT :BRIEF NIL)

This structure is a <RULE>

Name: CHAIN-FOREVER-0

id: RULE5276%

Owning KNO: AGENT

Reference Count: 0

Forward Feeding Node: M-LINK5274

Original form:

(CHAIN-FOREVER-0 (STATUS-OF CHAIN-IS ?N) (FILTER (< ?N 1000))--

(TELL AGENT (STATUS-OF CHAIN-IS (REVAL (1+ ?N)))))

RHS Lambda form:

(DEFUN CHAIN-FOREVER-0-RHS-S275 (BINDING)

NIL

(LET* ((KNO-RULE-BINDING (RULE-BINDING (DEF'INED-KNO? 'AGENT)))A

(KNO -LEFT-ENVIRONMENT-C

(ENVIRONMENT-SLOTS (BINDING-ENVIRONMENT BINDING))) '.

(?N (SVREF KNO-LEFT-ENVIRONMENT-C 0))
(GENERIC-TELL 'AGENT

AGENT

STATUS-OF

* (LIST 'CHAIN-IS (1+ ?N))

KNO-RULE-BINDING

':INFERRED))) '

This structure is a <RULE>

Na-me: CHAIN-FOREVER-i

id: RULES330

Ownixig KNO: AGENT

Reference Count: 999

Forward Feeding Node: M-LINKS328

Original form:

(CHAIN-FOREVER-i (TYPE-OF CHAIN-IS ?N) (FILTER (< ?N 1000))--

(DELETE AGENT (TYPE-OF CHAIN-IS ?N))

(TELL AGENT (TYPE-OF CHAIN-IS (REVAL (1+ ?N)))))

RHS Lambda form:

(DEFUrJ CHAIN-FOREVER-1-RHS-5329 (BINDING)

NIL

This structure is a <RUTLE>%

Name-: CHAIN-FOREV.ER-2

.. id: RULE5365

Owning KNO: AGENT
Reference Count: 0
Forward Feeding Node: JOIN5348

Original form:
(CHAIN-FOREVER-2 (UNIF-BIND-TYPE-OF ?M ?N)

(UNIF-BIND ?M)

(FILTER (< ?N 1000))

(TELL AGENT (UNIF-BIND-TYPE-OF ?M (REVAL (1+ ?N)))))

RHS Lambda form:
(DEFUN CHAIN-FOREVER-2-RHS-5347 (BINDING)

NIL ...)

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 2000

Deallocate count: 2000

BINDING-HEAP Length: 2

Allccate count: 1998
Deallocate count: 1998

GPC-HEAP Length: 999

Allocate count: 2000
Deallocate count: 1999

SVECTOR-HEAP Length: 2

Allocate count: 2000

Deallocate count: 2000
NIL

Kno> (DESCRIBE-STATISTICS 'AGENT)

TELL processing statistics for KnowledgeObject : AGENT

Clause Element Matching
Successful Element-matches : 1000

Failed Element-matches 1000
Total Element-matches 2000

Entire Pattern of Clause Matched
Successful Matches : 999

Failed Matches : 1

Total Matches : 1000

Clause - Clause Unification

Successful Merges :0

Failed Merges :0

- I

V -W%

Total Merges .0

Rules Triggered . 999
Rules Fired 999

NIL

Kno> (TELL 'AGENT '(UNIF-BIND-TYPE 'HAIRY-MOTHS 1))
Unknown predicate <<UNIF-BIND-TYPE>> for KNO <AGENT>
TELL operation ignored
For pclf: (UNIF-BIND-TYPE 'HAIRY-MOTHS 1)
NIL

Kno> (TELL 'AGENT '(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 1))
0

Kno> (DESCRIBE-KB 'AGENT)
PREDICATE STATUS-OF NIL
PREDICATE TYPE-OF 1
(TYPE-OF CHAIN-IS 1000)
PREDICATE UNIF-BIND NIL
PREDICATE UNIF-BIND-TYPE-OF 1
(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 1)
NIL

Kno> (TELL 'AGENT '(UNIF-BIND 'HAIRY-MOTHS))
999

Kno> (DESCRIBE-STATISTICS 'AGENT)

TELL processing statistics for KnowledgeObject AGENT

Clause Element Matching
Successful Element-matches 1000
Failed Element-matches 2001
Total Element-matches 3001

Entire Pattern of Clause Matched
Successful Matches : 1999
Failed Matches :2
Total Matches 2001

Clause - Clause Unification
Successful Merges : 999
Failed Merges :0
Total Merges : 999

.' ' . .'".- . . ." ,.

Rules Triggered 1998
Rules Fired 1998

NIL ,

Kno> (DESCRIBE-KB 'AGENT)

PREDICATE STATUS-OF NIL

PREDICATE TYPE-OF 1

(TYPE-OF CHAIN-IS 1000)
PREDICATE UNIF-BIND 1

(UNIF-BIND 'HAIRY-MOTHS)

PREDICATE UNIF-BIND-TYPE-OF 1000
(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 62)

(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 351)
(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 552)
(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 977)

(UNIF-BIND-TYPE-OF 'HAIRY-MOTHS 618)

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 2

Allocate count: 4000
Deallocate count: 3000

BINDING-HEAP Length: 2 ".

Allocate count: 3997
Deallocate count: 2997 P

GPC-HEAP Length: 0

Allocate count: 3001
Deallocate count: 1999

SVECTOR-HEAP Length: 3

Allocate count: 4000 N,
Deallocate count: 3000

VECTOR-HEAP Length: 0 1

Allocate count: 1119

Deallocate count: 105

NIL

%41

Kno> (CLEAR-KB 'AGENT)

NIL

Kno> (GC-STATISTICS)
ENVIRONMENT-HEAP Length: 1002

Allocate count: 4000

Deallocate count: 4000

S.3 'P
"I

'p
w

BINDING-HEAP Length: 1002

Allocate count: 3997
Deallocate count: 3997

GPC-HEAP Length: 1002

Allocate count: 3001
Deallocate count: 3001

&J.,
SVECTOR-HEAP Length: 1003

Allocate count: 4000 "
Deallocate count: 4000 I

NIL

Kno>

P

5°.

XI

1%

%-

.

p

- - - • -d | p : -

* - - -.- .- - - ~ . ~%w -d -. -

Appendix C

Common Lisp Diagnostic and Bench Package

This chapter outlines the installation procedure for the Common Lisp Diagnostic anid lunwh .
Package. It also briefly describes how to run the package.

-'S

C.1 Loading the CLBENCH

1. The CLBENCII package uses the Define-System utility. This utility is contained
in the file DEFSYS.LSP in the distribution kit. Copy DEFSYS.LSP to a chosen
subdirectory.

2. Compile load DEFSYS.LSP. The Dcfiric-System utility is now ready for use by the
CLBENCIt, GBENCH and PCL packages.

3. Copy the sources of the CLBENCI! package to a chosen directory.

4. The file for defining the CLBENCII system will automatically load the Dcfinc-Systcm
utility if it has not been already loaded. In order for the utility to be loaded the
pathname for Dcfine-System files must be known. Change the appropreiate pathiname
in the statement at the top of DEFBLNCII.LSP.

(eval-when (load eval)
(unless (boundp '*SYSTEM-BUILDER-UTILITIES*)

(load
#+Symbolics "p19:>fbi>kno>defsys.bin"

#+:gclisp "c:\\ghsrc\\defsys\\defsys.f2s"
)

(setf *SYSTEM-BUILDER-UTILITIES* :loaded)))

For example if you have copied DEFS}S.LSP in the directory-

C:\\Gold\\defsys\\
then change
#+:gclisp "c:\\ghsrc\\defsys\\defsys.f2s"

to
#4:gclisp "c:\\Gold\\defsys\\defsys.f2s".

5. While still in the file DEFBENCII.LSP, edit the variable *cl-bench-source-directory* /

to reflect the directory where the CLBENCI[package files reside. For example if the
CLBENCH package files are in the directory /Lucid/clbench and your environment
is Lucid Lisp on an Unix workstation then change

',,.

W.~

(defvar *cl-bench-source-directory*
+Lucid (pathname "/usr/lucid/clbench')

to

(defvar *cl-bench-source-directory*
#+Lucid (pathname "/Lucid/clbench")

6. Compile-load or evaluate DEFBENCHI.LSP.

7. Invoke the function Co mpile- CL- Bench to compile the package.

S. Invoke the function Load-CL-Bench to load the package.

G.2 Running the GLBENCH

The variable *all-timcrs* will contain all the symbol names of all individual Lisp operations
tested by CLBENCII. For example the test of the function caddr is referenced by the symbol
name CALL-CADDR.

The entire set of tests can be run and the results logged to file by the invoking the function:
Ru n- Series-To- File log-file-1xithname.

Individual tests can be invoked byv the function:
Run-One test-symbol-name.

86f

-Ni A tN

Appendix D

Meter Operation Utility

The Meter Operation Utility is a function for interactively testing and evaluating (metering)
the computational resources consumed by a Common Lisp form. The utility is written
in CommonLisp and is been transported to three different environments: the Svmbolics
3600 Common Lisp environment, the Gold lill Common Lisp environment, and the Texas
Instruments Explorer environment.

D.1 Installation of MeterOP

The Meter Operation Utility is contained in the file Meterop.lsp. To install the Meter Oper- U.

ation Utility compile and load this file into your target lisp environment. For convienience.
th" compiled file can be automatically loaded by including it in your world image or user

initilization load file list.

&2

D.2 Method of Use

The interface of the Meter Operation Utility is through the function:
User:MeterOp numbcr-of-itrrations function-application
where:

nurnbcr-of-itErations is the number of times function-application will be invoked.

function-application is a Common Lisp function application of the form (function arg-body).

For example:

*(defvar arr (make-array 10))

ARR ,

*(meterop 10000 (aref arr 4))

Test< 0>: Internal time (microsec): 129.0
Test< 1>: Internal time (microsec): 128.0
Test< 2>: Internal time (microsec): 129.0
<All values are in units of microseconds>

,e

Min: 128.0, Max: 129.0, Average: 128.66667, Sigma: 0.4759858

NIL

87 a.

Z Z AXA

*(meterop 10000 (svref arr 4))

Test< 0>: Internal time (microsec): 2.0Test< 1>: Internal time (microsec): 2.0I
Test< 2>: Internal time (microsec): 2.0

<All values are in units of microseconds>

Min: 2.0, Max: 2.0, Average: 2.0, Sigma: 0.0
NIL

which shows that the current implementation of the Gold Hill Common Lisp compiler will
optimize array access forms if the accessor svref is used. If the more common accessor arcf
is used the compiler makes no attempt at optimization.

Note that in the above example an iteration sample of 10000 was used. This is necessary
as the total time to execute number-of-iterations of function-application must exceed the
resolution of the Common Lisp implementation dependent function get-internal-run-tim.
The Gold lill Common Lisp implementation of get-internal-run-time has a resolution of
10000 microseconds while the Symbolics implementation has a resolution of 1 microsecond.

8,K"

• . - - . . "'-

Appendix E

Performance and Evaluation of Common Lisp Environments

The performance and evaluation of Common Lisp primitives were performed using the

CLBENCH and METEROP tools. Results from METEROP used a repeatation count of

10,000 for the Lisp Machine and 100,000 for Gold Hill Common Lisp. The tests were run

in the following hardware/software configurations:

Symbolics 3620
3 Megawords of memory
Using Symbolics Common Lisp Genera V7.1
Timer resolution: 1.0 microseconds

Gold Hill Common Lisp V3.0
Al Architects Hummingboard
1.5 Megawords of memory
Processor: Intel 80386 at 16 MvHz
Timer resolution: 10,000 microseconds

The results of the benchmarks are shown in Tables E.1-E.7. The times shown in all these
tables are ;n microseconds. The number given in each column is the minimum execution
time in a set of ten runs. The results of benchmarking Lisp primitives should be used only

as crude diagnostics of an implementation. Results can vary dramatically depending on the
function being tested and the arguments used.

Table E.1: Benchmarks of Common Lisp Function Invocation

CommonLisp Symbolics Goldltill Goldttill
Primitive 3620 Ilummingboard Symbolics

(us) (As) Ratio
0 arguments 4.5 20.7 4.6

1 arguments 5.98 24.5 4.1
2 arguments 7.93 28.0 3.5

Table E.1 shows the results of function invocation. One of the most significant and basic
performance differences between Symbolics 3620 and Gold Hill/H ummingboard platform is
the intrinsic time required to invoke a function call. This factor alone accounts for most of
the differences in performing the Gabriel benchmarks as reported in Appendix G.

89

Table E.2: Benchmarks of Common Lisp List Operations "

ConimonLisp Symbolics Goldlfill Goldttill '.
Primitive 3620 Ilummingboard Symbolics i

G's) (jus) Ratio ,

First 2.8 15" 5 i;
second 4.4 15,

Fifth 9.7 25" ,

Cdr 3.4 15, "-
Member 4.9 25- 5 -

6F

Cons 13.2 40' 3 -
List 23.5 75B 3on

Append 21 .8 250* 1

Rplaca 3.9 11.0" 2 ,

RLplacd 3.9 14.0'" 3".

.

Because the Symbolics list machine has special "cdr' bits for the encoding of lists thGod

results are uniform and monitonically increase with the length of the list. The GCLisp
implemeitation of lists and the operation of lists cause significant variation of diagnostic'
resuh.. All results shown in Table E.2 for Gold Htill are "starred" to indicate that these are :

average results.

The results of array operation tests are shown in Table E.3. The Symbolics compiler takes

special care to identify 1-dimenisional and 2-dimensional array references. The Gold Hlill '

compiler only optimizes simple vector references. We believe tis is because st'ref is used "'by Dfstruct accessors in the Gold Hill implementation. These results explain the large

performance differences seen in Gabriel benchmarks that use array references.

It fairl clear from the results shown in Table E.6 for Stri'ng Operations that the Gold Ifill ' -

string operations have not been optimized. The string function is particular fast oil the ,:
Svn lics as it is implem ented in microcode, .5

Considerably higher performance is expected for numerical calculations with the availabilty

of a Intel 80387 processor onl the Ilummingboard. At the time of these benichmila rks, such ,i.
aL option was not available.2

Rplaca 3..110

S"

~90

Table E.3: Benchmarks of Common Lisp Array Operations

CommonLisp Symlbolics GoldIlill Goldilill
Primitive 3620 Ilurnmingboard Symbolics

(jIs) (its) Ratio
Svref 3.65 2.0 0-5
Aref, 1iD 3.64 128 3.5
Aref, 2D 7.21 472 6.5
Aref, 3D 180.5 714 4
Aref, 4 D 217.1 802 4
Make-Array 59.8 1200 20
Vector-Push 30.7 260 9
Vector-Pushi-Extend 138.5 1700 12
Vector-Pop 55A4 230 4

Table EA4: Benchmarks of Common Lisp Symbol Operations

ComimonLisp Symbolics Goldilill Goldlhil'4
Primitive 3620 Hlumrningboard Synmbolics 'J

____________ O(is) (its) Ratio
Boundp 4.1 4 1

boundp 3.4 38 11
Intern 1 168.9 1122 0.7
Gensvm 572 22800 40

Tale E.5: Benchmarks of Common Lisp Hash Table Operations

SConnion Lisp S.vII bol ic s GoldlIIill Gold IIIII
Primitive 3620 II unmmingboard Symbolics
Sxh1ash 189.5 170 2
Gethash, eq 70.1 220 3
Gethash, equal 382.4 1800) 5

Table E.6: Benchmarks of Common Lisp String Operations

CommonLisp Symbolics GoldIlill Goldilill
Primitive 3620 Htummingboard Symbolics

(its) (ps) Ratio
String 10.2 1594 160
String-Upcase 486.0 8820 18
Make-String 67.6 1630 24

Table E.7: Benchmarks of Common Lisp Number Operations

CommonLisp Symbolics GoldHill Goldhlill
Primitive 3620 tIummingboard Symbolics
_ _ _(Lts) (Ais) latio
+, Integer 3.7 10 3

Integer 3.7 10 3
"*,Integer 8.9 35 4 ,

Integer 14.2 110 7
+ Float 10.1 208 20

-,Float 11.4 210 20

*,Float 13.0 300 25
/, Float 18.9 1340 70
Cos, Float 203.0 13000 65

Sqrt, Float 1l1.8 19000 170
Abs, Float 13.0 110 8
+, Bignum 111.0 50 0.5

Bignum 1014.0 50 0.5 1
*, Bignum 346 1200 4

/. Bignum . 3,90 16000 4

92

A

Appendix F

Gabriel Bench Package

This package contains the benchmarks as reported in Performance and Evaluation of Li.p -

Systems by R. P. Gabriel. The orginal version of this package was created at Synibolics,

Inc. It was translated to Common Lisp by Charlie Hornig with the subsequent development
of the timing tools by Charlie lornig and Dan Weinreb. The package was released to the
public domain where it was enhanced by Symbiotics with the inclusion of statisical data

and the Svref based benchmarks.

F.1 Loading the GBENCHI

1. The GBENCH package uses the same DEFSYS.LSP utility as the CLBENCII package.
The steps outlined in Loading the CLBENCH are identical to those that need be don'
here.

2. Modify the DEFGBEN.LSP file in the same manner as outlined for the DEFBENCII.LSP

file for the CLBENCII package.

3. Compile-load or evaluate DEFGBEN.LSP

4. Invoke the function Compile-Gabriel-Bench to compile the package.

5. Invoke the function Load-Gabriel-Bcnch to load thc package.

F.2 Running the GBENCH

The variable *all-tincrs* will contain all the symbol names of all individual lisp operations
tested by GBENCII. For example the test of the benchmark Takr is referenced by tho

symbol name Takr.

The entire set of tests can be run and the results logged to file by the invoking the funclioH:
Run-Series-To-File log-filc-pothname.

Individual tests can be invoked by the function:
Run-One test-synibol-naone.

%'

:0'

93

V % S
%;

..* * ***v*j]!.~~~~%%'~ 0g%*~O~0*,*%.0.~%%.

2~- 35 ACCUS: A CUUWCRTXNG AMO COOPU*?IN EXPER, SYSIEW ir

CY~SU)MOT C ICMM T T AL. 31 JAN 03 OAAII-97-C-W53

I 7WMMSIF I EO
F/0 12/5 N

AEMONf

IIg

III 1.0

ii Ii ,_I,
H~ *IIIII ',

1.25 f111l11.-4 IllI

I ~' rS(~L'I' ~ F

II

Sd.

4't

U. '...., : ,,: :.- -,.- - ,'.....;--. .'.-....-., .-. .X' .5

Appendix G

Gabriel Benchmarks Performance and Evaluation

Tl(Gabriel benchmarks were run on the following hardware/software configuratiOls:

Synbolics 3620
3 Nlegawords of memory
Using Symbolics Common Lisp Genera V7.1
" iner resolution: 1.0 microseconds

Gold Hill Common Lisp V3.0
Al Architects Hluminingboard
1.5 Megawords of memory
Processor: Intel 80386 at 16 MIIz
Timer resolution: 10,000 microseconds

The results of the beichmarks are shown in Tables G.1-G.7. The times shown in all these
tables are in seconds. The first number given in each column is the minimum execution
time in the set of ten runs. The next number down is the average of running the benchmark
ten les. The third number down, following the average time is the standard deviation
of execution time of the set of ten measurements. The resolution of the available timing
function available for the benchmarks varied from environment to environment.

Table G.I: Compilation Time of Gabriel Bench Package

Benchmark Svnibolics GoidlIlill
3620 1Iumnmingboard

(seconds) (seconds)
Compile 117 1910

119 2120
5 213

TIable G.1 shows the amount of tinie required to compile tie Gabriel benchnark file, This
is a factor of approximately twenty. Two major effects are the cause of this slow down. The
Svmbolics has more memory and thus has to do less saving of compile state out to the disk.
The second effect is due to the different architecture that the two compilers are targeting.
In the case of the Symbolics compiler it targeting to a machine whose instiuction set is
designed for Lisp. Anv Lisp compiler for the SOxSG family has a much more difficult task

94

,.A

adapting Lisp to the underlying architectu le's instruction set. The amouil of i lo-i lin
generated for the SOx8G is approximately four times that of Symbolics chip duo to tlie
extra instructions required for data type checking and 16-bit addressijg of 32-bil words.
However. these two factors do not explain this massive slowdown. An additional factor is
that the Gold Hill compiler does not have a native 80286 or 80386 compiler. Instead. a
80286 backend compiler has been added as a pass to the old 8086 compiler. Obviously. the
Gold iHill compiler could benefit from a complete overall. Improvements of factors of three
in compiler speed are attainable.

Table G.2: Gabriel Benchmarks of Function Calling and Flow of (ontrol

Benchmark Symbolics Goldilill
3C20 lImringboard

(seconds) (seconds)
Tak 0.449 2.42

0.455 2.42
0.004 0.00

STak 2.355 6.92

2.380 6.92
0.018 0.00

CTak 6.130 4.66
6.166 4.67
0.0 95 0.01

TakL 5.470 18.07

5.488 18.11
0.015 0.03

Taklt 0.501 2.41
0.507 2.43
0.005 0.03

For function calling and list operations the Symbolics Common Lisp environment averaged %

about 5 times faster. The exceptional benchmark in this class was Browse. Browse makes
heavy use of the function GENSYM for which the GCLisp on the Hummingboard is a factor
of 50 times slower than the Symbolics. This resulted in Browse being executed almost 40
times faster on the Symbolics.

The benchmarks that used extensive array operations Puzzle and Triangle had a Svmbolics-
(;oldlfill-lluniningboard ratio of approximately 30 and 20 respectively. This is because
direct 1-dimensional array references are on the order of 40 times slower using the current
implementation of Goldltill Common Lisp. Also shown in Table G.4 is the effect of ref-
erencing arrays with svcf instead of are. For the benchmark Triang the improvement in
performance is very significant.

9,

b,.5-

5%%

Table G.3: Gabriel Benchmarks of List Manipulation

Benchmark Symbolics GoldHill
3620 llummingboard

(seconds) (seconds)

Deriv 2.990 19.11
3.005 19.11
0.013 0.00

DDeriv 3.033 20.87
3.0,11 20.91
0.009 0.03

Div2,lterative 1.517 4.34

1.526 6.96
0.010 1.85

Div2,Recursive 2.466 9.84
2.484 9.91
0.013 0.06

Destruct 1.930 13.67

1.933 15.18
0.002 2.09

Boyer 10.315 38.29
10.325 41.53
0.007 2.29

Browse 15.097 522.1
15.128 525.7
0.030 3.9

Trav-mit 6.786 63.2
6.806 66.2
0.023 4.0

Traverse 37.29.5 178.6
37.303 178.6
0.010 0.0

S.A

Il

-.

9(i

5'I

."_."." :"," ':/ :. -''; '.''.' .''.'-:;.. ' '.:."':. . '::" .,':"':z-" ,Z ': l:-:-FT-'>.:':', "'.''-'?-': ,'','';'':, : X' 'z ,':,:t 5'

Table G.4: Gabriel Benchmarks of Array manipulation

Benchmark Symbolics Goldllill
3620 Ilummingboard

(seconds) (seconds)

Puzzle 15.147 450.3
w/aref 15.158 451.8

0.008 1.8

Puzzle 15.147 435.0
w/svref 15.158 435.1

0.008 0.1
Triang 136.598 2605.2
w/aref 136.621 2605.3

0.025 0.1
Triang 136.598 407.6
w/svref 136.621 408.0

0.025 0.2

Table G.5: Gabriel Benchmarks of Numerical, Integer

Benchmark Symbolics Goldtlill
3620 Humnmingboard

'_ _ (seconds) (seconds)

power=2 0.003 0.00

0.004 0.02
_-"_0.000 0.03
power=5 0.037 0.11

0.038 0.12
0.001 0.02

power= 10 0.412 1.26

0.415 1.28
0.00 7'!0.03

power= 15 2.885 15.5,
2.894 15.69
0.006 0.20 *

p 97

Ag

1

Table G.G: Gabriel Benchmarks of Numerical, Floating Point

Benchmark Symbolics Goldllill
3620 Hummingboard

(seconds) (seconds)
FFT 3.460 201.9

3.4S9 207.2
0.021 3.9

FFT 3.460 110.5
w/svref 3.489 110.5

0.021 0.0
power=2 0.003 0.00

0.00,1 0.03
0.001 0.03

power=5 0.039 0.33

0.041 0.33
0.001 0.00

power=10 0.456 4.07
0.463 4.07
0.004 0.00

power=15 3.223 36.36
3.250 36.51
0.021 0.14

P9

A. . . :

: . A.. P* w % -/~U % - ll II " l-ldAd . *.J\I .. i - i ~ -

Table G.7: Gabriel Benchmarks of Numerical, Big Numbers

Benchmark Symbolics Goldlill
3620 Hlummingboard

(seconds) (seconds)
power=2 0.006 0.00

0.007 0.03
0.001 0.03

power=5 0.146 5.17
0.148 6.78
0.001 2.23

powver= 10 2.230 131.1
2.248 131.6

________ 0.013 0.4
power=15 16.949 1404.0

16.962 1437.2
40.010 23.7

'$99

,.

Appendix II %

Optimized and Extended Portable Common Loops

H.1 Loading Optimized PCL

1. The OpPCL package uses the same DEFSYS.LSlP utility as the CLBENClt packao.
The steps outlined in Loading the CLBENCH are identical to those that need he do,
here.

2. Modify the DEFOPPCL.LSP file in the same manner as outlined for the I)EF-
BENCII.LSP file for the CLBENCJI package.

3. Compile-load or evaluate DEFOPPCL.LSIP

4. Invoke the function Compile-OpPCL to compile the package.

5. Invoke the function Load-OpPCL to load the package.

H.2 OpPCL Extensions to the PCL Specification

The general reference to all the PCL and the CLOS specification in general is:
D. G. Bobrou and G. Kiczalcs.
Common Lisp Object Systcm Specification
Draft X3 Docunmcnt 87-003, Xcrox PARC, 10-F'b-1987.
All work mentioned here is an extension of the implementation of PCL and as such retains 'A

the specified interface of CLOS with minor changes to avoid name conflicts with existing-
functional entry points.

defmnethod-op form"
dcftnethod-op is functionally equivalent to the PCL macro dfincthod. defmcthod-op deter-
mines the slot accessors at compile time by generating direct access forms for local slot 'K

values for all references to an object's slots within a method. The result is a significant
speedup and a significant reduction in the amount of code generated. The disadvantage
to the Symbiotics oltimization is that all instances of a modified PCL object will not he
updated. This is reconciled by recompiling all methods of an object when the olject*'S
definition is changed.

The following example shows the use of defnmthod-op and dcfmcthod. A method acccss-op-.5
is defined using definehod-op which returns the values of slots s, s2, s3, s4 and s.. In a
similar fashion the method access-nrn-5 is defined using defncthod.

(defclass pcl-obj () ((sl :initform 1)

100

(s2 :initforn 2)

(s30 :init form nil)

(:reader-prefix pcl-obj 2-))

(defvar obj (make-instance 'pcl-obj))

(definethod-op access-op-S ((ob pcl-obj) x)
(values x si s2 s3 s4 s5))

(defmethod access-nm-S ((ob pcl-obj2) x)
(with-slots (ob)

(values x si s2 s3 s4 s5))

A sense of the difference in the resulting- imiplemnentation of the access mnethods genierated
by dcfnicthod-op and defnicthod cani be achieved by applying disp/ay-rnacro-ezpansion or
the equivalent on each of the formns. The resultinig difference in code lbetwveen these twvo
formns is quite noticeable.

10

Appendix I

Optimized PCL Performance and Evaluation

In the early part of the Phase I effort, Symbiotics undertook the effort of improving Xerox
PARC's public domain implementation of the developing Common Lisp Object System
Specification [Bo87J. This package is commonly known as PCL or Portable Common Loops.
PCL had been designed by the original architects to be a template with which a more
optimized version could be built according to the target port environment. This appendix
discusses the approach taken by Symbiotics to improve the performance of PCL and the
results of those improvements.

1.1 Approach Taken To Improving PCL Performance

As the results of the performance study of PCL following this section will show, PCL suffers S
serious performance degradation over other object oriented packages. Our main objective
in studying the design of PCL was to identify areas where performance could be improved.
Also an equally important objective, was that any performance improvements gained did
not come at the cost of changing the function specification of the CLOS interface presented.

One of the design decisions made in developing the original PCL was to support dynamic -

object definitions. In a problem domain where it is expected that descriptions change
rapidly relative to the rate at which those descriptions are accessed, an interpreted inher-
itance scheme is usually computationally optimal. An interpreted inheritance scheme is
implemented by retaining all descriptions locally to the defining parent object and chaining
back through the inheritance chain to resolve any query for a description. The time required
for retrieval in this approach is linearly proportional to the length of the inheritance chain.
The upside of this approach is the ease of implementing and the computational efficiency
of the description maintenance machinery. To change a description, only the description
of the containing parent object need be modified. Using this implementation strategy. a
description's representation is localized to one body, its value distributed only upon access.
This approach has the disadvantage that accessing the state of the object is prohibitively
expensive for dedicated applications in which object definitions do not change.

In our approach to improving the performance of PCL we looked for an alternative to that -S
of determining object descriptions at runtime. Instead, we altered the way PCL creates
object state accessors. In our approach object state locations are determined at compile S
time. Object state access is a direct reference into the structure of the object.

102

A|

1.2 Results of PCL Performance Evaluation

The Svmbiotics PCL benchmarks were run on the following hard ware/software configura-
tions:

Symbolics 3620
3 Megawords of niemory
Using Symbolics Common Lisp Genera VT.1
Timer resolution: 1.0 microseconds

Gold Ilill Common Lisp V3.0
AI Architects H ummingboard
1.5 Megawords of memory
Processor: Intel 80386 at 16 MHz
Timer resolution: 10,000 microseconds

The following tables summarize the results of running the various classes of Symbiotics PCI'
benchmarks. All times in Tables 1.1 through 1.5 are in microseconds. The first number given
in each column is the average execution time averaged over one thousand trials. The next
number down. following the average time is the standard deviation of execution time of the
set of one thousand trials. The variable under test is the number of differcnt slots accessed
in a single method call. The resolution of the available timing function available for the
benchmarks varied from environment to environment.

'fable 1.1 shows the performance results of original PCL as supported by Xerox PARC. The
amount of time increases nonlinearly in proportion to the number of slot accessed. The
locators of the most recent slots accessed are cached in a hash table of length 15. Any
collisions in the cache causes the previous locator to be flushed in preference to the most
recently calculated locator. If a locator is not in the cache then it must be calculated. The
calculation of a slot locator is very expensive compared to a direct access. For the object
used in this test, thrashing or a high collision rate 'n the cache does not occur until 10
slot accesses on the Symbolics. It occurs at 5 slot accesses on the Goldliill/Ilummingboard
experiment. This is no reflection on either environment but rather a matter of accident.

The five or ten slots chosen just happen to thrash less on the Symbolics as their names
when hashed do not collide as often. The hash function on the Symbolics is 32-bit wide
while the Goldllill one is 16-bit wide. The 30-slot benchmark could not be compiled using -.

the current version of GoldIill Common Lisp and 6 megabytes of memory. Compilation
failure resulted due to running out of "atomspace".

Table 1.2 shows the results of an experiment with generic PCL in which it was assured there
was a 100% slot access cache hit rate. Slot names were chosen which did not collide with
each other and thus cause cache thrashing for 1, 5 and 10 slot accesses. The PCL cache is
15 bins long and holds the locators of the last 15 slots accessed. If the locator is not residing
in the cache then it is calculated. The method which has 30 slot accesses is guaranteed to
cause this cache strategy to fail and thus measures the rate of slot access when the locator

103

V N,. %

Table 1.1: Uno)tinied PCI,

Number of Symmibolics Gold hill Goldilill
Slots Accessed 3620 1lummningboard Symbolics

(ps) (/Is) Ratio

1 102 662 6.5
1 50 -

I
5 156 315-1 20.2 U

2 77 -

10 518 7790 15.0
• 5 3 -

30 9331 *

14 -

must be calculated after a collision.

Table 1.2: U1noptjmIzed PCL with 100X, slot cache hit rate

Number of Svmbolics Goldllill Goldilill
Slots Accessed 3620 l umnmingboard Svnbolics

(ps) (ps) Ratio
102 66S 6.0

1 41 -

5 157 1370 8.7 eP

3 37 -

10 22-1 2310 10.3
3 50 -

Table 1.3 shows the timing results of the Symbiotics optilnized PCL. In this version slot
locators are calculated at compile-timne not run-time. The locators are placed in-line of the
method being defined. The performance ratio we now see between Goldllill/I ummingboard
and the Symbolics 3620 is predicted by the results of Common Lisp and Gabriel benchmark
experiments. Optimized PCL methods are predominately function calls and direct structure
access. The initial overhead of finding and dispatching the method call is approximately 90
ps on the Symbolics and 630 ps for Goldilill. With the optimizations. the execution time
increases linearly with the number of slots accessed. This increase is approximately 2 ;is
for the Symbolics and 5 ps for Goldtlill, the time of a slot access.

Table 4 summarizes the results by comparing the original implementation of PCL versus the
optimized version for the Gold1 ill/if umnmingboard environment. This comparsion clea rlv

10-

:p,.
-.-t

Table 1.3: Optiimized P('l.
I

Number of Symbolics Goldlill Goldlfill

Slots Accessed 3620 Ilurmingboard Symbolics

(s) (pis) Ratio
1 91 628 6.9

1 26 -
101 636 6.3

1 43 -

10 112 662 5.9 -N
1 45 -

30 167 774 4.6
1 28 -

shows that calculating the slot locator at runtime is the major consumer of cyc!es ill it
method call.

Table 1.4: Optimized PCL vs. Unoptimized PCL for Goldltill/lIummingboard Environment

N umber of Optimized Unoptimized Unoptimized ..p.

Slots Accessed PCL PCL Optimized ',N

(/Is) (ps) Ratio
1 628 662 1.05

26 50 - K
5 636 3154 5.0

43 77 --

10 662 7790 11.8
45 53 "

30 774 22000 28.,t

28 -'-

Table 1.5 summarizes the resul's by comparing the original implementation of PCI- versus -%
the optimized version for the Symbolics environment. Also, shown in Table 1.5 is the tlimin-,
results using the object oriented system available on Symbolics machines, Flavors. The intial
cost of finding and dispatching a PCL method is much higher than dispatching a Flavor -

method. After this base cost is absorbed, however, we see that slot access of both Flavors
and optimized PCL pay the same price of about 2 ps.

'N,

105

V V

3,,. .5',3',',"".%3'' .,'',," ", " ".',. ,5." '.,,". .N' .L", '..". ". *." . . ., " . N ."'.. ".', .4"., - ',"X". , '"..., .- V,2 ,, .,' '

Tabl, 1.5: Optimized P(L vs. U-noptimized PCI for Symbolics/3620 Environini ii

Number of Optimized "UnOl)timized Flavors

Slots Accessed PCI, PCL ,

(s(1s) .

1 91 102 21
1 1 1 I

101 156 28

1 2 1

10 112 514 38 V

1 4 1

30 167 9331 82

1 14 1
'

1.3 Suiinary of PCL Optimization Result

I

An unoptimized version of PCL in the Gold Iill/HIummingboard environment is not cur-

rently viable as a substrate on which to build any sizable or robust application. The

exponential slowdown in slot access time with increasing number of different slot accesses

is a considerable burden. Object oriented applications can easily have objects with slots

numbering over 5 and often over 10. As the slot "caching" scheme of PCL is a hashtable

of length 15. on the average slot index calculation thrashing becomes significant when 3

or more different slots are accessed during method calls. Also, indirect indexing code is

generated at the site of each slot reference which results in an excessive amount of code

generation. This effect is most apparent when we were not able to compile a PCL method

that made 30 slot accesses. The code expansion of the method consumed all of memory in

the Goldliill/11ummingboard and resulted in the crashing of the GCLisp environment. ,

The Svinbiotics optimization of PCL was done by generating direct access forms for local

slot values for all references to an object's slots within a method. The result is a significant

speedup and a significant reduction in the amount of code generated. The disadvantage

to the Symbiotics optimization is that all instances of a modified PCL object will not be S

updated. This is reconciled by rebinding the old instances of the old PCI, object with the

new definition of the PCI. object. Future work would be the development of a utility that

tracks all object definitons and their instances. When an object definition is changed the

instance and all children of the object can be notified and recomlpiled with the new slot

accessois. I

106

a-

.1

~ p ~ p aI
- -~ a 'a . 'a

li Bibliography

-.

,

.,

-

4 '\ .,,~ ..y .

[A4'2 Agerwl ad Arvin DaaF1u SiJstimW Compu)ter, Vol. 15, No.2, Id)- 19'S2

[AgS7] G. Aghia. A CTORS: A Alodcl of Concurr-ent C7omputation in Distribu(d Systcin.s
M.I.T. Press, Cambridge MIA, 1987.

[Ain861 F. Andre, D. Ilerman anid 3.P. Verjus Synchironization of Parallcl Programs MIT
Press. 1986

[BaS:3] G. Barton. A Mulliple-Contcxt Equality-Based Reasoniing Swstu AI-TR -715,
M.I.T. Artificial Intelligence Laboratory, April-19S3.

[BaSG] M. Blanks. Concurrent Cooperating Knowledge Bases Science Applications Inter-%
national Corporation, McLean, VA. Oct.-19S6.

[BeSbi G. Blellochi. CIS. A Massively Concurrent Rule-Based System M.I.T. Artificial
Intelligence M\erno-739, 1986.S

[Bi743) G.M. Birtwistle SIAIULA begin Auerbach Publishers, 1973.

[B1'87] R. Bisiai.i F. Alleva, F. Correrini, A. Forin, F. Lecouat, and R. Lerner Heteroge-
neous Parallel Processing: The Agora Shared Memory Carnegie-IMellon UniversitN,

Computer Science Department, CMIU-CS-S7-112. March 1987.

[BoSG] D.G. Bobrow et al. GommonLoops: Merging Lisp anid Objcct-Or-icntcd Program-

ming Working paper for OOPSLA'86 Proceedings, 1986.

[BoS7] D.G. Bobrow anid G. Kiczales. Common Lisp Object System Specification Draft X3
Document R7-003. Xerox PARC, 10-Feb-198"7. b

[Bi-75) Per Brincli Hansen The Programming Language Concurrent Pascal IEEE Trans.
on Software Eng., Vol. SE-i, No. 2. June-1975.

[BrS83] It. Brachiman, R. Levesque and 11. Levesque. Krypton: A Functional .Approach to
Knowledge Repre-sentation IEEE Computer.Vol. 16, No. 10, pp. 67-73. Oct-1983. 6

[CG87] Carnegie Group. KnowledgeCraft CRL Tcchnical Manual, V~ersion 3.1 Carnegie
Group 1987.

[CoS61 B. J. Cox. Object-Oriented Programming: An Evolutionary Approach Addison-
Wesley. Reading. Massachusetts. 1 9S6. 6

[C182] D. D. Clark Internet Protocol Implcnicntation Guide SRZI International. Menlo

Park. CA, August 1982

[DaS I R1. Davis and R. Smith. Negotiation as a .iletaphor for Distributed Problem77 SolVing

MN.I.T . Artificial Intelligence Laboratory Menio-624, 1981.

[DeST] B. A. Delagi. N. P'. Saraiya, anid G. T. Byrd Lamina: Care Applications lute (rfac(
Stanfor-d University, Knowledge Systems Laboratory, KSL 86-67. Nov. 1987

[DiGS) E.W. Dijkstra Co-operating Sequential Processes Programming Languages - INATO
Advanced StudY~ Institute, Academic Press, pp. 43-110. 196S.

108

% . S~-.P % %SS

[DkSG] J. deKleer. An Assumpt ion-Based Truth Alaintcnaicc Systemn Artificial Intelligence
Vol.28 pp. 127-162, 1986.

[Do79] J. Doyle. A Truth Maintenance System Artificial Intelligence Vol.12 pp. 231-272
1979.

[EDS7] Nicolas Mokhoff Five-chip tokEn-passing set operatcs L.4NS at 100 Afbits/ls Elec-
tronic Design Vol. 35.No. 22 pp. 45-50, Sept-17,1985.

[FaS7] Joseph R. Falcone. A Programmable Interface Language for lieterogenous Dis-
tributed Systems ACM Transactions on Computer Systems, Vol. 5, No. 4, Novem-
her 19S7, pp. 330-351.

[FiS5] R. Fikes and T. Kehler. Frame-Based Representation in Reasoning Communica-
tions of the ACM Vol. 28(9) pp. 904-920.

[Fi85] R. Fikes and T. Kehler. Frame-Based Representation in Reasoning Communica-
tions of the ACM Vol. 28(9) pp. 904-920.

[GaS5] Richard P. Gabriel. Performance and Evaluation of Lisp Systems MIT Press, 1985.

[GaSG] L. Gasser, C. Braganza, and N. Herman. AA CE: A Flexible Testbed for Distributed
AI Research Distributed Artificial Intelligence Group, Computer Sci. Dept. USC.
9-Aug-1986.

[Ge82] M.R. Genesereth. An Overview of Meta-Level Architecture HPP-81-6., Heuristic
Programming Project, Stanford University, Dec-19S2.

[GeS7] M.R. Genesereth Deliberate Agents Technical Report Logic-87-1. Stanford Univer-
sity, Logic Group, 1987.

[Gr78] J.N. Grey Notes on Database Operating Systems Lecture Notes in Computer Sci-
ence, Springer- Verlag, pp. 393-481, 1978.

[Gr80 R. Greiner. RLL-i: A Representation Language Language Working Paper 80-9,
Heuristic Programming Project., Stanford University, Oct-1980.

[laS6] B. Hayes-Roth. A Blackboard Architecture for Control Artificial Intelligence,
Vol.262, pp.251-321. Mar-1986.

[Hi85] V. Daniel Hillis The Connection Machine MIT Press, 1985.

[110781 C.A.R. Hloare Communicating Sequential Processes CACM. Vol. 21, No. 8, pp.
666-677, Aug-1978.

(HsS6a] K. lasse. ARLO: Another Representation Language Offer M.I.T. Artificial Intelli-
gence Laboratory Technical Report 901, 1986.

[Hs86b] K. Hasse. Why Representation Language Languages arc No Good M.I.T. Artificial
Intelligence Laboratory Memo-943, 1986.

109

4

[llsS6c] K. Ilasse. Discovery Systers M.I.T. Artificial Intelligence Laboratory Meino-899. "
Aug-1986.

[11e77] C. Hewitt. Viewing Control Structures as Patterns of Message Passing Journal of
Artificial Intelligence, pp. 323-364, June-1977.

[IleS5a] C. Hewitt, T.Reinhardt, G. Aglia and G. Attardi. Linguistic Support of Scrializers
For Shared Resources In Seminar on Concurrency, p330-359, Springer-Verlag, 1985.

[lleS5b] C. Hewitt and P. deJong. The Challenge of Open Systems BYTE Vol. 10, pp.223-
242, April-1985.

[IeS6 C. Hewitt. Offices are Open Systems ACM Transactions on Office Information
Systems, Vol.4, No.3. p271-287, July-1986.

[11185] D. Hillis. The Connection Machine MIT Press, 1985.

(Inf87] ART Reference Manual, V"ersion 3.0 Inference Corporation, 1987.

[InS5] KEE Software Development System User's Manual, Version 3.0 IntelliCorp, 1985

[ISO79] ISO TC 97 SC16. Open Systems Interconncction N227 August, 1979.

[Kn68] D. Knuth. Semantics of Context-Frce Languages Mathematical Systems Theory
Vol. 39, pp. 127-145, 1968.

[KoSi] K. Konolige. A First-Order Formalization of Knowledge and Action for a Multi-
Agent Planning System Machine Intelligence. Vol.10, pp.4 1-7 2 , 1981.

[Kr81] W.A. Kornfeld and C. Hewitt. The Scientific Community Metaphor. M.I.T. Arti-
ficial Intelligence Memo-750, Jan-1981.

[KCSS6] ,nowledge Systems Corporation Evaluation of Al Languages and Knowledge En-
gineering Environments Knowledge Systems Corporation, 1986

[LeS2] D. Lenat. AM: Discovery In Mathematics as Heuristic Search Knowledge Based
Systems in Artificial Intelligence, McGraw 1ill, 1982.

[LeS3] D. Lenat. Eurisko: A Program That Learns New Heuristics and Domain Concepts
The Al Journal, March-1983.

[LeS6] D. P. O'Leary, G.W. Stewart and Robert van de Geijn. DOMINO: A Message
Passing Environment for Parallel Computation University of Maryland, Computer
Science Technical Report Series. TR-1648. April, 1986.

[Li79J Barbara Liskov Prim itivcs for Distributcd Computing Proc. Seventh ACM Symp.
on Operating Systems, pp. 33-42, 1979.

[LoS6] Loh-Ping Yu The Anatomy of a Distributed Elcetronic Mail Network The Executive
Guide to Data Communications, Vol. 8, pp. 104-107,

110

N.-

ID

(LyS1] N. Lynch and J. Fischer On Describing Behavior and Implementation of Distributcd
Systems Theoretical Comp. Sci., Vol. 13, No. 1, 1981

Tv[Ma85] C.R. Manning. Organizing Sprites M.I.T. Artificial Intelligence Laboratory Memo.u1 9S5."

[Mc82] D. McAllester. Reasoning Utility Package Uscr's Manual Al Memo 667., M.I.T.
Artificial Intelligence Laboratory, Cambridge MA, 1982.

[MiS6] M. Minsky. The Society of Mind (Simon & Schuster, 1986

[MoS5] J. Elliott B. Moss Nested Transactions - An Approach to Reliable Distributed Com-
puting MIT Press, 1985.

[NeSi] B.J. Nelson Remotc Procedure CallTechnical Report CSL-81-9, Xerox PARC, 1981.

[PaS7] Robert C. Paslay Persistent Object Definitions - PODS Symbiotics Inc., Cam-
bridge, MA Dec-1987.

[Pos5] Gerald Popek and Bruce J. Walker The Locus Distributed System Architecture MIT
Press, 1985.

[PoS7] Dick Pountain and David May A Tutorial Introduction to OCCAM Programming
McGraw-Hill, 1987

[PP87] Portable Programs for Parallel Processors McGraw-Hill, 1987.

(IReS2] T. Reps Generating Language-Based Environments Ph.D Thesis. Cornell Univer-
sity, Aug-1982.

[RoS6] John L. Romkey PC-IP Programmer's Manual Laboratory for Computer Science,
MIT, April-1986.

[Ro87] S. Rowley, H. Shrobe, R. Cassels and W. Hamscher Joshua: Uniform Access to
Heterogenous Knowledge Sources AAAI-87, pp. 48-52. Seattle, Wa

[RuS5] S. Russel The Complete Guide to MRS Stanford Knowledge Systems Laboratory
Report No. KSL-85-12. Stanford, Ca. 1985.

[Ru87] D.E. Rumelhart, McCelland, J.L. and the PDP Research Group MIT Press, 1987

[SaS5] lI.S.H. Sandell and R.W. Worrest. Cooperative Real-Time Planning: An Ezper-
imental Study 30th North Carolina IEEE Symposium and Exhibition. pp.7 9 -S.4 .
Oc t-1985.

[SaS6] Jerome I. Saltzer and John L. Romkey PC/IP User's Guide Laboratory for Comi-
puter Science, MIT, April-1986.

[ScSG] L. Schubert and F. Peiletier. From English to Logic: Contezt-Fee Computation of
'Conventional' Logical Translations In Readings in Natural Language Processing %
ed. by B. Grosz, K. S. Jones, ard B. Webber. Morgan Kaufmann Pub. Inc., Los
Altos, Ca. 1986.

II1 U,

-. % %.%.N
'

-- 5

. •~
.. °,-

, .%

D.T. !

I
'.- S

6 VFA.A.? ' ' _.-.-

